2,192,751 research outputs found
Programming in logic without logic programming
In previous work, we proposed a logic-based framework in which computation is
the execution of actions in an attempt to make reactive rules of the form if
antecedent then consequent true in a canonical model of a logic program
determined by an initial state, sequence of events, and the resulting sequence
of subsequent states. In this model-theoretic semantics, reactive rules are the
driving force, and logic programs play only a supporting role.
In the canonical model, states, actions and other events are represented with
timestamps. But in the operational semantics, for the sake of efficiency,
timestamps are omitted and only the current state is maintained. State
transitions are performed reactively by executing actions to make the
consequents of rules true whenever the antecedents become true. This
operational semantics is sound, but incomplete. It cannot make reactive rules
true by preventing their antecedents from becoming true, or by proactively
making their consequents true before their antecedents become true.
In this paper, we characterize the notion of reactive model, and prove that
the operational semantics can generate all and only such models. In order to
focus on the main issues, we omit the logic programming component of the
framework.Comment: Under consideration in Theory and Practice of Logic Programming
(TPLP
Polymonadic Programming
Monads are a popular tool for the working functional programmer to structure
effectful computations. This paper presents polymonads, a generalization of
monads. Polymonads give the familiar monadic bind the more general type forall
a,b. L a -> (a -> M b) -> N b, to compose computations with three different
kinds of effects, rather than just one. Polymonads subsume monads and
parameterized monads, and can express other constructions, including precise
type-and-effect systems and information flow tracking; more generally,
polymonads correspond to Tate's productoid semantic model. We show how to equip
a core language (called lambda-PM) with syntactic support for programming with
polymonads. Type inference and elaboration in lambda-PM allows programmers to
write polymonadic code directly in an ML-like syntax--our algorithms compute
principal types and produce elaborated programs wherein the binds appear
explicitly. Furthermore, we prove that the elaboration is coherent: no matter
which (type-correct) binds are chosen, the elaborated program's semantics will
be the same. Pleasingly, the inferred types are easy to read: the polymonad
laws justify (sometimes dramatic) simplifications, but with no effect on a
type's generality.Comment: In Proceedings MSFP 2014, arXiv:1406.153
Implicit Theories and Self-efficacy in an Introductory Programming Course
Contribution: This study examined student effort and performance in an
introductory programming course with respect to student-held implicit theories
and self-efficacy. Background: Implicit theories and self-efficacy shed a light
into understanding academic success, which must be considered when developing
effective learning strategies for programming. Research Questions: Are implicit
theories of intelligence and programming, and programming-efficacy related to
each other and student success in programming? Is it possible to predict
student course performance using a subset of these constructs? Methodology: Two
consecutive surveys (N=100 and N=81) were administered to non-CS engineering
students in I\c{s}{\i}k University. Findings: Implicit theories and
self-beliefs are interrelated and correlated with effort, performance, and
previous failures in the course and students explain failure in programming
course with "programming-aptitude is fixed" theory, and also that programming
is a difficult task for themselves.Comment: Programming Education. 8 page
Approximate Dynamic Programming via Sum of Squares Programming
We describe an approximate dynamic programming method for stochastic control
problems on infinite state and input spaces. The optimal value function is
approximated by a linear combination of basis functions with coefficients as
decision variables. By relaxing the Bellman equation to an inequality, one
obtains a linear program in the basis coefficients with an infinite set of
constraints. We show that a recently introduced method, which obtains convex
quadratic value function approximations, can be extended to higher order
polynomial approximations via sum of squares programming techniques. An
approximate value function can then be computed offline by solving a
semidefinite program, without having to sample the infinite constraint. The
policy is evaluated online by solving a polynomial optimization problem, which
also turns out to be convex in some cases. We experimentally validate the
method on an autonomous helicopter testbed using a 10-dimensional helicopter
model.Comment: 7 pages, 5 figures. Submitted to the 2013 European Control
Conference, Zurich, Switzerlan
Constraint Programming viewed as Rule-based Programming
We study here a natural situation when constraint programming can be entirely
reduced to rule-based programming. To this end we explain first how one can
compute on constraint satisfaction problems using rules represented by simple
first-order formulas. Then we consider constraint satisfaction problems that
are based on predefined, explicitly given constraints. To solve them we first
derive rules from these explicitly given constraints and limit the computation
process to a repeated application of these rules, combined with labeling.We
consider here two types of rules. The first type, that we call equality rules,
leads to a new notion of local consistency, called {\em rule consistency} that
turns out to be weaker than arc consistency for constraints of arbitrary arity
(called hyper-arc consistency in \cite{MS98b}). For Boolean constraints rule
consistency coincides with the closure under the well-known propagation rules
for Boolean constraints. The second type of rules, that we call membership
rules, yields a rule-based characterization of arc consistency. To show
feasibility of this rule-based approach to constraint programming we show how
both types of rules can be automatically generated, as {\tt CHR} rules of
\cite{fruhwirth-constraint-95}. This yields an implementation of this approach
to programming by means of constraint logic programming. We illustrate the
usefulness of this approach to constraint programming by discussing various
examples, including Boolean constraints, two typical examples of many valued
logics, constraints dealing with Waltz's language for describing polyhedral
scenes, and Allen's qualitative approach to temporal logic.Comment: 39 pages. To appear in Theory and Practice of Logic Programming
Journa
A framework for understanding the factors influencing pair programming success
Pair programming is one of the more controversial aspects of several Agile system development methods, in particular eXtreme Programming (XP). Various studies have assessed factors that either drive the success or suggest advantages (and disadvantages) of pair programming.
In this exploratory study the literature on pair programming is examined and factors distilled. These factors are then compared and contrasted with those discovered in our recent Delphi study of pair programming.
Gallis et al. (2003) have proposed an initial framework aimed at providing a comprehensive identification of the major factors impacting team programming situations including pair programming. However, this
study demonstrates that the framework should be extended to include an additional category of factors that relate to organizational matters. These factors will be further refined, and used to develop and empirically evaluate a conceptual model of pair programming (success)
- …
