64,731 research outputs found

    Transformations of High-Level Synthesis Codes for High-Performance Computing

    Full text link
    Specialized hardware architectures promise a major step in performance and energy efficiency over the traditional load/store devices currently employed in large scale computing systems. The adoption of high-level synthesis (HLS) from languages such as C/C++ and OpenCL has greatly increased programmer productivity when designing for such platforms. While this has enabled a wider audience to target specialized hardware, the optimization principles known from traditional software design are no longer sufficient to implement high-performance codes. Fast and efficient codes for reconfigurable platforms are thus still challenging to design. To alleviate this, we present a set of optimizing transformations for HLS, targeting scalable and efficient architectures for high-performance computing (HPC) applications. Our work provides a toolbox for developers, where we systematically identify classes of transformations, the characteristics of their effect on the HLS code and the resulting hardware (e.g., increases data reuse or resource consumption), and the objectives that each transformation can target (e.g., resolve interface contention, or increase parallelism). We show how these can be used to efficiently exploit pipelining, on-chip distributed fast memory, and on-chip streaming dataflow, allowing for massively parallel architectures. To quantify the effect of our transformations, we use them to optimize a set of throughput-oriented FPGA kernels, demonstrating that our enhancements are sufficient to scale up parallelism within the hardware constraints. With the transformations covered, we hope to establish a common framework for performance engineers, compiler developers, and hardware developers, to tap into the performance potential offered by specialized hardware architectures using HLS

    A Reconfigurable Tile-Based Architecture to Compute FFT and FIR Functions in the Context of Software-Defined Radio

    Get PDF
    Software-defined radio (SDR) is the term used for flexible radio systems that can deal with multiple standards. For an efficient implementation, such systems require appropriate reconfigurable architectures. This paper targets the efficient implementation of the most computationally intensive kernels of two significantly different standards, viz. Bluetooth and HiperLAN/2, on the same reconfigurable hardware. These kernels are FIR filtering and FFT. The designed architecture is based on a two-dimensional arrangement of 17 tiles. Each tile contains a multiplier, an adder, local memory and multiplexers allowing flexible communication with the neighboring tiles. The tile-base data path is complemented with a global controller and various memories. The design has been implemented in SystemC and simulated extensively to prove equivalence with a reference all-software design. It has also been synthesized and turns out to outperform significantly other reconfigurable designs with respect to speed and area

    A Survey of Memristive Threshold Logic Circuits

    Full text link
    In this paper, we review the different memristive threshold logic (MTL) circuits that are inspired from the synaptic action of flow of neurotransmitters in the biological brain. Brain like generalisation ability and area minimisation of these threshold logic circuits aim towards crossing the Moores law boundaries at device, circuits and systems levels.Fast switching memory, signal processing, control systems, programmable logic, image processing, reconfigurable computing, and pattern recognition are identified as some of the potential applications of MTL systems. The physical realization of nanoscale devices with memristive behaviour from materials like TiO2, ferroelectrics, silicon, and polymers has accelerated research effort in these application areas inspiring the scientific community to pursue design of high speed, low cost, low power and high density neuromorphic architectures

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page

    High throughput spatial convolution filters on FPGAs

    Get PDF
    Digital signal processing (DSP) on field- programmable gate arrays (FPGAs) has long been appealing because of the inherent parallelism in these computations that can be easily exploited to accelerate such algorithms. FPGAs have evolved significantly to further enhance the mapping of these algorithms, included additional hard blocks, such as the DSP blocks found in modern FPGAs. Although these DSP blocks can offer more efficient mapping of DSP computations, they are primarily designed for 1-D filter structures. We present a study on spatial convolutional filter implementations on FPGAs, optimizing around the structure of the DSP blocks to offer high throughput while maintaining the coefficient flexibility that other published architectures usually sacrifice. We show that it is possible to implement large filters for large 4K resolution image frames at frame rates of 30–60 FPS, while maintaining functional flexibility
    corecore