

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/136460

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/323057966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/136460
mailto:wrap@warwick.ac.uk

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

High Throughput
Spatial Convolution Filters on FPGAs

Lenos Ioannou, Student Member, IEEE, Abdullah Al-Dujaili, Member, IEEE,
and Suhaib A. Fahmy, Senior Member, IEEE

Abstract—Digital signal processing (DSP) on field-
programmable gate arrays (FPGAs) has long been appealing
because of the inherent parallelism in these computations that
can be easily exploited to accelerate such algorithms. FPGAs
have evolved significantly to further enhance the mapping of
these algorithms, included additional hard blocks, such as the
DSP blocks found in modern FPGAs. Although these DSP blocks
can offer more efficient mapping of DSP computations, they
are primarily designed for 1-D filter structures. We present a
study on spatial convolutional filter implementations on FPGAs,
optimizing around the structure of the DSP blocks to offer
high throughput while maintaining the coefficient flexibility that
other published architectures usually sacrifice. We show that
it is possible to implement large filters for large 4K resolution
image frames at frame rates of 30–60 FPS, while maintaining
functional flexibility.

Index Terms—Convolution, digital signal processing (DSP),
field programmable gate arrays (FPGAs), image processing.

I. INTRODUCTION

Image and, by extension, video processing entail inten-
sive computations on a large stream of input pixels. A full
HD color video streaming at 60 frames per second (FPS)
requires a processing throughput of over 124 million pixels
per second for each channel. This rate, coupled with the
numerous operations required per pixel in a typical vision
flow, result in many GOPS for real-time processing. Exploiting
parallelism is therefore paramount to achieve real-time system
implementation [1]. Spatial filtering, or 2-D convolution, is a
fundamental operation used in the initial stages of many vision
applications, and as a result, its efficiency significantly impacts
higher layers in these applications. Meanwhile, the resolution
of images and videos is increasing, with 4K video now
commonplace, quadrupling the computational requirements
compared to full HD. In addition, the increasing popularity
and wider use of convolutional neural networks (CNNs) in a
plethora of applications [2] makes spatial convolution even
more important. As deeper CNNs with more neurons per
layer are developed, the memory required to store weights
and biases grows significantly. Hence, most CNN acceleration
architectures buffer pixel and weight data in off-chip memory,
which breaks the streaming model that is more relevant for

Manuscript received November 26, 2019; revised March 10, 2020; accepted
March 25, 2020. This work was supported in part by the U.K. Engineering
and Physical Sciences Research Council (EPSRC) under grant EP/N509796/1.

Lenos Ioannou and Suhaib A. Fahmy are with the School of
Engineering, University of Warwick, Coventry CV4 7AL, U.K. (e-
mail:l.ioannou@warwick.ac.uk; s.fahmy@warwick.ac.uk).

Abdullah Al-Dujaili is with Analog Devices, Norwood, MA 02062 USA
(e-mail: ash.aldujaili@analog.com).

real-time streaming video applications. Moreover, some CNNs
make use of varying convolution window strides, which re-
duces computational complexity compared to a streaming filter
that processes overlapping windows. Hence, optimizations
applied in CNN implementation do not typically apply to
streaming video processing, and yet the performance require-
ments continue to scale.

High performance image-processing on field programmable
gate arrays (FPGAs) has been an active field of research,
mainly due to the ability of FPGAs to exploit fine and
coarse grained parallelism, allowing for tradeoffs between
performance and area [3]. The reconfigurability of FPGAs also
means that they can provide the flexibility often desired in
vision systems. Their high throughput processing, ability to
exploit parallelism, and flexibility have led to the wide use of
FPGAs in real time vision systems [4]–[6] and to implement
a variety of filter structures [7], [8].

A typical vision processing flow moves from pixel-level
operations to more abstracted algorithms on less dense and
structured data, where software implementations can be a
better fit due to ease of programming and irregular data access
patterns. Ideally a real-time vision system would therefore
couple the high performance of a hardware accelerator, to take
advantage of massive parallelism in low level operations, with
the programmability of a processor for higher level operations.
FPGA SoCs, like the Xilinx Zynq, couple an embedded
processor with flexible reconfigurable fabric on the same sili-
con, with high throughput connectivity between them. FPGA
platforms with PCIe connectivity can also be used within a
workstation environment alongside a more capable CPU. The
reconfigurability of FPGAs, including partial reconfiguration,
also allows them to support dynamic vision systems where
the hardware can adapt at runtime to changing conditions [9].
Hence, FPGAs are ideal for implementing the full computer
vision stack including higher level software and low-level
hardware in a broad range of domains, from distributed
embedded computing to high performance servers. Within
this context, we explore generalized convolution architectures
to maximize the throughput of low-level operations within a
typical vision flow for high bandwidth video streams.

Convolution, or 2-D spatial filtering, is computed by initially
performing a pixelwise multiplication of each pixel within
a window with a corresponding coefficient, followed by a
function that aggregates these products to produce a single
output [10]. Both of these functions may vary for different
filter applications. The coefficients used in the pixelwise mul-
tiplication define the filter’s operation, which can be, for ex-

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 2

ample, noise removal, image sharpening, blurring/smoothing,
or feature extraction. With real-time vision systems typically
deployed on streaming images, input data flow becomes sim-
pler, not requiring storage of complete frames. It is, however,
important that the computations within the convolution meet
the real time constraints to avoid becoming a bottleneck.

Increasing image resolution in mainstream use means that
the dimensions of convolution windows must also scale in
order to maintain their effectiveness. For example, a 3×3 filter
applied to a 1280 × 720 image is equivalent to a 9 × 9 filter
for a 3840 × 2160 image if spatial equivalence is required.
This, consequently, results in increased workload on more
input pixels that in turn requires more demanding processing
in order to maintain the same frame rate.

Most previous work on FPGA-based spatial filters has
focused on optimizations based on the use of fixed coefficients
or coefficients constrained to a specific range [11]. Such opti-
mizations are most effective for filters in which the coefficients
consist of zeros or ones, or other powers of two, since each
multiplication can be replaced with a shift, resulting in no
use of multipliers [12], and much improved hardware area
efficiency. This comes at the cost of flexibility as those systems
are fixed to a single purpose. Fixed filter implementations,
however, are not ideal for smart vision systems, in which filters
at the lower layers should be flexible enough to dynamically
adapt to different requirements. Flexible convolution architec-
tures use generic multipliers while providing external access
to the coefficient registers to support dynamic adaptability.

In this article, we show how the considered use of high
performance DSP blocks in generalized filter architectures can
achieve high throughput that meets real-time constraints. Com-
pared to previous work, this article focuses on maximizing
the throughput of spatial filtering on FPGAs while maintain-
ing dynamic coefficient adaptability though external register
access. More specifically, the proposed architecture is built to
fully exploit the DSP block resources on modern FPGAs while
managing the required data buffering and architectural pipeline
for 2-D filtering, and being scalable to large filter and frame
sizes. Optimization around the FPGA architecture enables the
proposed filters to achieve higher operating frequency and, as
a result, higher throughput than the previous work.

A. Generic Filter Architecture

A typical filter architecture and its functional blocks are
depicted in Fig. 1. It operates in streaming mode, receiving a
new pixel from the source image in each clock cycle, in raster
scan order. To compute an output pixel, all pixels within the
corresponding input window must be available. For w × w
filter sizes, where w is an odd number, pixels from w rows
are required to compute each output pixel. This requires a row
buffer with the ability to store w−1 rows plus w pixels (since
only w pixels are needed from the last row). Full frame buffer-
ing is, therefore, not needed for streaming images, something
that would consume significant area for large frame sizes, and
possibly require frequent off-chip memory accesses, which
can have a significant performance and power consumption
overhead.

Pixel In

Row Buffer

Row Buffer

× × × × × × × × ×

++++

++

+

+

. . .

. . .

.
.

..
.

..
.

Pixel

Cache

Filter

Function

Adder

Tree

Pixelwise

Multiplications

Coefficient Registers

Fig. 1: Filter architecture block diagram.

The pixels in the w×w filter window from the input image,
formed around the calculated pixel, are stored in the pixel
cache block as shown in Fig. 1. The pixel values are then
fed to the pixelwise multiplications block within which they
are multiplied in parallel with the corresponding coefficients,
which are stored in registers and can be configured at runtime.
This enables modification from the higher layers of a complete
vision stack as described previously. The filter’s operating
mode is controlled by a state machine that cycles between idle,
coefficient update, priming, processing, and flushing modes.
Output data are streamed at the same rate as the input pixels,
maintaining simple data movement with no need for storing
complete frames.

Numerous approaches toward more efficient filter designs
have been proposed in the literature. These mainly target the
core underlying multiply-accumulate (MAC) operations and
are generally divided into two categories, multiplier-based
and multiplierless filters. Multiplier-based filters directly map
the multiplication to hardware multipliers. Park et al. [13]
proposed a sharing scheme targeting vector–scalar multipli-
cations through decomposing FIR filters. Bougas et al. [14]
use internal pipelining in multiplier arrays to fold FIR filters.
Ma et al. [15] reduce the computational complexity of 2-D
convolutions by splitting large filter windows to a sequence of
convolutions with smaller window sizes.

Multiplierless filters avoid the use of multipliers through
various arithmetic transformations and representations. These
include programmable canonic signed-digit (CSD) representa-
tion in [16], and distributed arithmetic (DA) in [17] and [18]
that replaces multiplications with lookup table memories and
adders. The Bachet weight decomposition theorem is used in
[11] to similarly replace multipliers with ROMs and adders.
Other multiplierless methods tailor their architecture to the
filter function with hardwired shifts [19] or make use of
powers-of-two weights for multiplierless CNN inference [12].

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 3

B. FPGA DSP Block Architecture

FPGA DSP blocks have evolved significantly since their
introduction into FPGA architectures, from simple multiplier
blocks to fixed MAC capability, to programmable multiplica-
tion and arithmetic/logic in modern devices. While DSP block
availability was limited in older FPGA platforms, even low
end FPGAs today include sufficient DSP blocks to implement
large filters. DSP blocks have also evolved to support wider
input lengths, additional input ports, incorporation of a pre-
adder, pattern detection capability and SIMD support. For
instance, the DSP48E1 block on Xilinx 7 Series FPGAs
supports multiplication, MAC, multiply-add, add-MAC, and
three-input-add functions, among others. Interconnect between
DSP blocks has also been improved, with modern FPGAs
now offering dedicated cascade interconnect between DSP
blocks that allows wider computations and chaining of DSP
blocks to form 1-D FIR filters without using the logic fabric,
hence achieving higher performance. Although connectivity
enhancements benefit 1-D FIR filter implementations, 2-D
structures cannot fully exploit these features, so data move-
ment and buffering must be done manually in the logic fabric.
Dynamic programmability is another feature of the DSP48E1,
where it is possible to adjust ALU function (ALUMODE),
operation mode (OPMODE) and input selection (INMODE)
dynamically at runtime. This has led to their use in lightweight
soft processors [20] and flexible overlay architectures [21],
[22] where their functionality can be modified on a cycle-
by-cycle basis or to reconfigure functional units, all while
achieving high throughput.

However, to exploit these features and achieve high perfor-
mance, designs must be optimized at a low level as synthesis
tools are often unable to infer the best structures for com-
plex designs [23]. Indeed, since DSP blocks can be clocked
significantly higher than the typically achievable frequency
in complex designs, it is possible to share them in a time-
multiplexed manner through multipumping, where they are
clocked at a multiple of the surrounding logic and multiple
operations are mapped to a single DSP block per cycle with
suitable buffering [24].

C. Boundary Handling

While the convolution window scans the input image, its
computation becomes more complex when it targets pixels at
the edges. This calls for particular handling or padding as
the convolution window requires pixels that do not exist, as
shown in Fig. 2. An alternative is to restrict the sliding window
within the valid region of the input frame, which results in an
output frame of reduced size compared to the input frame. A
scalable architecture should be able to support the addition of
border management schemes without a significant impact on
performance.

This article proposes a flexible design that uses DSP blocks
for the pixelwise multiplication, alongside various design
options for the adder tree. In order to achieve high throughput,
all filter architectures are extensively pipelined. We make
comparisons between direct and transposed form filters and

Input Image Output Image

Window Filter

Interior
pixel

Border
pixel

Input Frame Output Frame

 Filter Window

Fig. 2: Filtering for interior and border pixels.

also investigate the impact of border management. The pro-
posed architectures achieve high throughput by operating at
near the DSP block theoretical maximum frequency, while
also maintaining an adaptable convolution architecture with
coefficients that can be updated at runtime. We show how
the baseline architecture scales to three widely used video
resolutions: HD (1280× 720), full HD (1920× 1080) and 4K
(3840× 2160), on a range of filter sizes that span from 5× 5
to 25 × 25. Lastly, we compare our design with equivalent
filters generated using high level synthesis (HLS) tools and
with previous work found in the literature.

II. FILTER ARCHITECTURE

The proposed filter architectures reflect the general architec-
ture described in Section I-A, with a variety of architectural
optimizations to achieve high throughput. Here, we discuss the
details of the design.

The general structure of a filter, comprising pixel cache,
coefficient multiplication, and adder tree was shown in Fig. 1.
Filters can also be implemented in transposed form, in which
the incoming sample is multiplied by all coefficients and prod-
ucts are summed serially through the delay line. Transposed
form architectures have the advantage of being pipelined by
default [10] compared to the manual pipelining required in
direct form. FPGA DSP blocks have the required functionality
and connectivity to enable 1-D transposed form filters to be
implemented using only DSP blocks with no external logic.
And hence, these designs have reduced resource utilization
and improved performance. For 2-D filters, however, data is
buffered across multiple rows and as a result buffering is
more complex and cannot be implemented directly using DSP
blocks. Direct form architectures require a separate adder tree,
which consumes additional resources and power. The adder
tree depth depends on the filter size and scales by log2 of
the filter size w. Although our proposed architecture is in
direct form, we present a comparison against a transposed form
implementation for completeness.

A. Filter Function

The utilization of DSP blocks in our proposed architecture
has been made through direct instantiation. Although FPGA
vendor tools are able to infer the use of DSP blocks from RTL
code, their efficiency decreases for more complex structures
as this automated inference does not fully exploit all DSP
block features or always suitably pipeline them [24]. Through
direct instantiation, we are able to control low-level DSP block
mapping and ensure high throughput.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 4

A1

B1

C

A2

B2

× M
+

- P

Fig. 3: DSP48E1 block diagram for multiplication.

B. Pixel Cache

The filter cache consists of row buffers and individual regis-
ters for the pixels in the active window, which are connected to
the coefficient multipliers. The number of row buffer units and
individual registers depends on the filter size while the length
of the row buffers depends on frame width. Hence, higher
frame resolution is more demanding in terms of buffering,
utilizing more memory elements. Shift register look-up-tables
(SRLs) are one way of more efficiently implementing line
buffers on FPGAs, since pixels in the line buffers do not
need to be accessed until they reach the filter window. By
utilizing a suitable coding style, it is possible to ensure the
line buffers are implemented using SRLs [25]. To demonstrate
the impact of this optimization, a six-row buffer (for a 7× 7
filter size and 1280 wide frame) utilizes over 61 000 flip-
flops or only 110 flip-flops and 1920 LUTs when implemented
using SRLs. The savings introduced through use of SRLs
contributes to the scalability of the proposed architecture.
SRLs do impact achievable frequency, lowering it from 700
to 600 MHz for this isolated experiment, but this is in line
with the capabilities of the DSP block and so not a limiting
factor in the proposed architecture, while offering a significant
area saving. Moreover, the higher resource utilization of the
register based implementation can have an adverse impact on
the placement and routing process in a larger design, resulting
in longer routing delays for other parts of a design [25].

C. Adder Tree

In a direct form filter implementation, DSP blocks config-
ured as multipliers, as shown in Fig. 3, are used to calculate
the pixelwise products while a separate adder tree follows to
sum these products up and generate an output pixel value. We
explore three different types of adder trees, as shown in Fig. 4.
More specifically, the three layouts are as follows.

1) DSP Layout: The adder tree comprises directly instan-
tiated DSP blocks configured as wide adders. Since this
operation is mapped directly to silicon, we use this as
a baseline for maximum performance. In this case only
the postadder in each DSP block is used.

2) LOG Layout: The adder tree is mapped to the FPGA
logic fabric. This results in a more balanced utilization
of the device resources. Each adder in this layout is fol-
lowed by a register, resulting in a pipelined architecture
that is mapped to LUTs and registers.

3) DSPCOMP Layout: A compression component, mapped
to the FPGA logic fabric, is used to reduce the depth of

××××××

DSP
Reconf. Fabric

Pixel In Coeff. In

DSPLOG DSPCOMP

. . .

. . .

. . .

+ +

Compressor (6:3)

+

+

Fig. 4: Alternative adder tree layouts: LOG, DSP, and
DSPCOMP.

the adder tree while also using fewer DSP blocks. More
specifically, the logic-based compressor (6:3) takes six
operands and generates three partial sums, which are
then summed using two DSP blocks.

Using hardened DSP blocks for the multiplier means that
wordlength can be chosen to use the maximum available
within the structure without impacting area significantly. The
filter architecture uses 14 fractional bits. For the pixelwise
multiplications, the input pixels are mapped to the 25-bit
inputs of the DSP48E1 blocks while the coefficients are
mapped to their 18-bit inputs. In every case, the output of
each multiplication is reduced from 48 to 24 bits and then
fed to the adder tree. In the first stage of LOG- and DSP-
based adder trees, 24-bit additions are performed, while in the
following stages, 48-bit additions are performed. The reduced
input wordlength at the first stage is taken advantage of by
adjusting the adders’ wordlength in the LOG filter, and by
mapping two 24-bit additions to a single DSP block in the
DSP filter, reducing the number of DSP blocks utilized. In
the DSPCOMP, 45-bit additions are performed throughout the
adder tree due to the fixed wordlengths. The 24-bit inputs are
sign extended accordingly before being fed to the DSPCOMP
adder tree.

Information about the DSP block utilization and latency for
each adder tree layout is summarized in Table I, and dataflow

TABLE I: Adder tree layout resource consumption.

Architecture

DSP LOG DSPCOMP

Number of Inputs 2 2 6

Basic Units 1 DSP48E1 LUTs
2 DSP48E1s

LUTs
Latency 3 1 10
Number of adders
for w = 7

48/36* 48 10

Number of stages
for w = 7

5 5 3

*without/with SIMD mode

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 5

A1

B1

C

A2

B2

× M
+

- P

Fig. 5: DSP48E1 block diagram for addition.

is shown in Fig. 4. To achieve high throughput, each adder tree
is extensively pipelined. The adders implemented in DSP48E1
blocks have a latency of three clock cycles, as shown in Fig. 5,
the compression logic requires two additional clock cycles to
generate its partial sums while adders mapped on the FPGA
fabric have a latency of a single clock cycle.

Transposed form filters are formed by reversing the signal
flow while rearranging the building blocks of direct form
filters accordingly. This results in an inherently pipelined adder
tree [10]. Transposed form filters in 1-D are fully supported
by the DSP blocks, since an MAC operation can be mapped
to a single block, and therefore requires no external logic.
Although in 2-D structures some logic is required, this does
not fully nullify the savings introduced.

The estimates of DSP block utilization in a transposed form
filter function for a w × w convolution window are outlined
in TableII. The DSP block utilization shows those used in the
individual pixel multiplications and the adder tree separately.
In the direct form design with DSP adder tree, the dual 24-bit
SIMD mode (two two-input adders) is used at the first stage
of the adder tree to pack two additions in a single DSP block,
as described earlier. Although the 25-bit preadders in DSP
blocks usually offer a more efficient utilization of the DSP
resources, they can be used only in the first stage of the adder
tree where 24-bit additions take place, so mapping two 24-
bit additions to the 48-bit postadder was preferred. This leads
to the same DSP block utilization, while maintaining a more
straightforward interconnect with no need for delay buffers.
In the direct form design with LOG adder tree, the adder tree
is mapped to the FPGA fabric, using no DSP blocks. The
compressor (6:3) in the direct form design with DSPCOMP
adder tree generates three partial results that are summed up
using two DSP blocks, at the expense of some logic utilization,
compared to the five DSP blocks required in the direct DSP.
The proposed architecture does not include any mechanism
to handle overflow and as a result inaccuracies may occur in
cases where the intermediate results overflow.

III. BORDER MANAGEMENT TECHNIQUES

Border management techniques handle the undefined re-
gions of an input pixel stream to produce an output of the
same size. Spatial filters can be implemented without border
management, generating output images with reduced size. In
1-D filters, this affects only the very beginning of the input
signal, and the first outputs can be ignored. In two dimensions,
however, this affects every output frame, reducing frame

TABLE II: DSP Block usage for different configurations for
a filter size of w × w.

DSP Block Usage DSP blocks for
Mult. Block Adder Tree w = 7

Direct

DSP w2 w2−1
4

+ w2−1
2

85

LOG w2 - 49

DSPCOMP w2 d 2× w2−1
5
e 69

Transposed w2 49

size. Although this may not be an issue for all applications,
there are occasions where this can be problematic, such as
when a sequence of filters is used to process an image. In
CNNs for machine learning, border management is not usually
required, since as data propagate through the neural network,
the convolutions are applied to more abstracted features and
these edge pixels have little or no impact. Filters with no
border management have simpler control logic and data flow,
allowing a straightforward implementation of a transposed
form filter.

The complexity introduced by border management has
resulted in a body of work on mitigating its effects. A review of
2-D border handling methods on FPGAs is presented in [26],
where the authors also introduce a novel border handling
management scheme with overlapped priming and flushing.
In this method, registers acting as temporary pixel buffers and
multiplexers are used to reduce the time overhead in handling
border pixels. Bailey and Ambikumar [10] proposed two novel
border handling mechanisms, transformation coalescing, and
combination chain modification, that reduce the complexity
of border handling in transposed form filters while taking
advantage of the inherent pipelining of the transposed form
structure. Another approach in [27] considers symmetric ex-
tension for 1-D signal border management by exploiting the
SRL16 shift register primitives in Xilinx FPGAs to skew data.
This technique, however, is not ideal for DSP block based
filters as it introduces shift registers between the multiplication
and addition, preventing efficient mapping to DSP blocks.

Table III summarizes some of the methods used for border
handling along with notes on their advantages and disad-
vantages. Further details on these methods can be found
in [1]. The techniques in the last three rows of Table III are
graphically illustrated in Fig. 6. These approaches are more
widely used compared to others. Mirroring, for instance, is
used in [26]–[28].

These techniques can be implemented in hardware in a
number of ways, as briefly described in Table IV, while [26]
offers a more detailed discussion. Direct window input and
cached priming add extra stalling cycles when processing bor-
der pixels, reducing their efficiency. This also complicates the
streaming data flow and, as a result, the data-path control logic
in real-time systems. The overlapped priming and flushing
schemes on the other hand, both naive and the scheme pro-

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 6

TABLE III: Image border management techniques.

Advantages Disadvantages

Border Neglecting
No additional control logic Reduced frame size which can

be problematic for small frames
or when cascading filters

Wrapping
Small control logic, Same frame
size

Possible discontinuity and arte-
facts

Function Change
Same frame size Complex control logic, difficult

to generalize to all filters
Constant Extension

Same frame size Discontinuity, artefacts, addi-
tional control logic

Border Duplication
Same frame size Discontinuity, artefacts, addi-

tional control logic
Mirroring with/without Duplication

Same frame size Additional control logic

Image Width

Image
Height

(W-1)/2

(W-1)/2

(W-1)/2 (W-1)/2 Image Width

Image
Height

(W-1)/2

(W-1)/2

(W-1)/2 (W-1)/2

Image Width

Image
Height

(W-1)/2

(W-1)/2

(W-1)/2 (W-1)/2 Image Width

Image
Height

(W-1)/2

(W-1)/2

(W-1)/2

 Frame Width Frame Width

 Frame Width Frame Width

Frame
Height

Frame
Height

Frame
Height

Frame
Height

Fig. 6: Border management techniques (top left: constant
extension, top right: border extension, bottom left: mirroring
with duplication, bottom right: mirroring without
duplication).

posed in [26], preserve the regular streaming flow at the cost
of additional logic. More specifically, additional multiplexers
are required to make the replacement values immediately
available. The naive scheme uses extra row buffers along with
the additional temporary registers within the window pixel
cache, requiring additional memory components. All these
techniques are modifications to the pixel cache block in the
filter architecture.

This article does not focus on border handling techniques
and their optimization, but we demonstrate that our proposed
architecture can be extended with these techniques without
significant impact on performance or efficiency. We have

TABLE IV: Image border handling technique
implementations in hardware for a filter size of w × w.

Advantages Disadvantages

Direct Window Input
No modifications to pixel cache Complex address generation

logic, stalling input stream
when processing border pixels
by (w − 1) between rows and
frames for priming and flushing

Cached Priming
No complex address generation
logic

Stalling input stream when pro-
cessing border pixels by (w −
1)/2 between rows and frames
for flushing, requires extra mul-
tiplexers

Naive Overlapped Priming & Flushing
No stalling, no complex address
generation logic

Extra multiplexers, extra tempo-
rary pixel buffers within pixel
cache, and extra temporary row
buffers

Overlapped Priming & Flushing (proposed in [26])
No stalling, no complex address
generation logic, no extra tem-
porary row buffers

Extra multiplexers, extra tempo-
rary buffers within pixel cache

considered border extension using the overlapped priming and
flushing scheme for comparison.

IV. PROPOSED ARCHITECTURE RESULTS

This section presents the implementation results of the
proposed filter architecture, showing operating frequency and
throughput as well as area and latency (which represents the
number of clock cycles required for the first output pixel to be
generated), for different design parameters. We first investigate
our proposed architecture in detail using an indicative filter
with a 7 × 7 window for 1280 × 720 frames, which we
use to make comparisons between the adder tree types in
direct form, the direct and transposed forms, against an HLS
equivalent, and the impact of border management on area and
performance. We then show how the architecture scales on
three frame sizes, 1280×720, 1920×1080 and 3840×2160, for
11 different filter sizes, ranging from 5×5 to 25×25. Finally,
we compare the proposed architecture against published work
in the literature. All our designs were implemented in Verilog
HDL, using Vivado 2018.2, targeting the Xilinx Virtex 7
XC7VX690 on the VC709 development board and the results
presented in Sections IV-A– IV-F are post place and route.

A. Adder Tree Designs in Direct Filter Structure

We explore the effect of three different adder trees, DSP,
LOG, and DSPCOMP, as described in Section II without
considering border management. Table V summarizes the
operating frequency and latency for the three designs, all
offering high throughput at similar frequencies. The LOG filter
is slightly slower with marginally improved latency.

Table VI shows the resource utilization for all designs.
All filters use 49 DSPs for the pixelwise multiplication, as
shown earlier in Fig. 1. The LOG design does not use any

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 7

TABLE V: Frequency and latency of direct form filter
implementations with different adder tree designs for
1280×720 frame, 7×7 filter and no border management.

Adder Tree
Design

Freq.
(MHz)

Latency
(Cycles)

DSP 535 7713
LOG 525 7700
DSPCOMP 530 7725

TABLE VI: Resource utilization of direct form filter
implementations with different adder tree designs for
1280×720 frame, 7×7 filter and no border management.

Modules Adder Tree Resource

Regs LUTs DSPs

DSP 735 0 –
Coeff. File LOG 735 0 –

DSPCOMP 735 0 –

DSP 49 59 –
Control Unit LOG 49 63 –

DSPCOMP 49 59 –

DSP 440 1920 –
Pixel Cache LOG 440 1920 –

DSPCOMP 104 1920 –

DSP 4516 12 85
Filter Func. LOG 4539 1464 49

DSPCOMP 8954 1120 69

DSP 5768 1991 85
Total LOG 5791 3447 49

DSPCOMP 9870 3099 69

DSPs in the adder tree, while the DSP design uses 36 and
the DSPCOMP design 20 DSP blocks when w = 7. These
results correspond with the estimates in Table II. When com-
paring the total resource utilization, we see that DSPCOMP
utilizes the most registers while ranking second for LUT and
DSP utilization. Since all filters operate at almost the same
frequency, DSPCOMP can be considered the least efficient
when considering utilized area. We observe that LOG utilizes
about 73% more LUTs compared to DSP while using 42%
fewer DSP blocks and approximately the same number of
registers. Considering the availability of such resources in
modern FPGAs, DSP blocks are the least abundant, while the
register-to-LUT ratio is 2 to 1. Therefore, the resource mix
of the LOG filter better mirrors the FPGA architecture and
utilizes the fewest DSP blocks. Trading 1456 LUTs and 23
registers for 36 DSP blocks is a net positive in area terms based
on the approximate 120:1 ratio of resources on the device.
This configuration allows better replication of parallel filters
for different streams while not utilizing more DSP blocks than
are necessary, and achieving almost identical performance.

B. Direct Versus Transposed Form Architectures

Table VII summarizes the resource utilization, maximum
operating frequency, and latency of the direct form (with LOG
adder tree) and transposed form architectures. The transposed

TABLE VII: Direct and transposed form implementation
summary with 1280× 720 frame and 7×7 filter.

Module Direct LOG Transposed

Regs LUTs DSPs Regs LUTs DSPs

Coef. File 735 0 - 735 0 -
Control Unit 49 63 - 83 42 -
Pixel Cache 440 1920 -

}
918 7200 49

Filter Func. 4539 1464 49

Total 5791 3447 49 1763 7242 49

Freq. (MHz) 525 505
Latency (Cyc) 7700 7691

form filter structure combines the pixel cache and filter func-
tion into a single module so separate results are not shown. In
terms of performance, both filters have similar latency while
the direct form operates at a slightly higher frequency. Direct
form uses significantly more registers than the transposed form
while using about half as many LUTs. The majority of LUTs
in the transposed form filter are utilized by the combined filter
function and pixel cache modules. The LUTs in this case are
solely used as shift registers (SRLs) for buffering, affected
primarily by image width. The transposed form architecture
does not require an adder tree, instead using an adder chain
that can be packed into the same DSP blocks that implement
the individual multipliers. As a result, the DSP utilization
of both filters is the same. Additional logic is still required,
however, for the 2-D transposed form filter as the dedicated
cascade wires offered by the DSP blocks are only suitable for
1-D structures. The direct form LOG design implements the
adder tree in the FPGA logic fabric.

While both filters have similar performance, with the direct
form operating at slightly higher frequency, their resource
utilization varies significantly. The resource utilization of LOG
has a better register to LUT ratio as discussed previously. The
transposed form filter architecture is also less extensible to
support border handling as pixel values within the window
are already accumulated with other pixels. This issue has
been discussed in [27], where the use of shift registers is
proposed as a solution. This approach however separates the
multiplication and addition, making the resource utilization
similar to the direct form. Two novel border handling tech-
niques are proposed in [10] to reduce the border handling
complexity in transposed form filters. These methods result
in designs of similar complexity to the direct form ones.
Hence, transposed form filters must sacrifice their efficiency
to offer scalability and support for border handling. We show
that direct form filters can be suitably pipelined to achieve
equivalent performance. Finally, as discussed earlier, the re-
source utilization mix of the direct form filter better mirrors
the resource availability on modern FPGAs.

C. Direct Filter Structure With Border Management

Although border management is not the focus of this article,
we explore the use of the overlapped priming and flushing

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 8

5 7 9 11 13 15 17 19 21 23 25
200

250

300

350

400

450

500

550

600

650

HLS Filters

3840×2160@30 FPS

3840×2160@60 FPS

FILTER SIZE

Fr
eq

ue
nc

y
1280× 720
1920× 1080
3840× 2160

(a) Operating Frequency.

5 7 9 11 13 15 17 19 21 23 25

0

200

400

600

FILTER SIZE

D
SP

s

1280× 720
1920× 1080
3840× 2160

(b) Utilized DSPs.

5 7 9 11 13 15 17 19 21 23 25

0

2

4

6

8
·104

FILTER SIZE

FF
s

1280× 720
1920× 1080
3840× 2160

(c) Utilized Flip-Flops.

5 7 9 11 13 15 17 19 21 23 25

0

1

2

3

4

·104

FILTER SIZE

L
U

T
s

1280× 720
1920× 1080
3840× 2160

(d) Utilized LUTs.

5 7 9 11 13 15 17 19 21 23 25

0

0.5

1

1.5

2
·104

FILTER SIZE

L
U

T
s

1280× 720
1920× 1080
3840× 2160

(e) Utilized LUTs as Logic.

5 7 9 11 13 15 17 19 21 23 25
0

0.5

1

1.5

2

2.5
·104

FILTER SIZE

L
U

T
s

1280× 720
1920× 1080
3840× 2160

(f) Utilized LUTs as shift registers.

Fig. 7: Implementation results of the proposed filter architecture on three image resolutions, each on 11 filter sizes.

TABLE VIII: Direct LOG architecture for 1280× 720 frame
and 7× 7 filter with border policy from [26].

Modules Direct LOG

Regs LUTs DSPs

Coef. File 735 0 –
Control Unit 63 65 –
Pixel Cache 652 1657 –
Filter Func.-LOG 4542 1464 49

Total 6020 3186 49

Freq. (MHz) 515

Latency (Cycles) 3860

scheme presented in [26]. As some applications may require
the use of border management, this section demonstrates
the extensibility of the proposed architecture to support this
feature. Moreover, we quantify the overhead introduced, as a
result of the increased design complexity. Table VIII summa-
rizes the implementation results of the direct form LOG filter
with border management on a 7 × 7 filter for a 1280 × 720
frame size.

Compared to the direct form LOG design without border
management, the border extension architecture uses fewer
LUTs and more registers, while DSP block utilization remains
the same. Of particular interest is the LUT reduction in theP-
ixel Cache module within the border management architecture.

Its LUT utilization amounts to 376 LUTs for logic and 1281
LUTs for SRLs, meanwhile the same module without border
extension uses all 1920 LUTs as SRLs. The straightforward
flow of data without border management enables the synthesis
tool to map the Pixel Cache into SRLs. In contrast, border
management requires additional logic for its implementation
and its more complex data flow is mapped to both SRLs and
registers, contributing to higher utilization of slice registers.
Border management reduces frequency marginally due to the
increased complexity of the design and increased routing
congestion. The latency of the first output pixel is decreased,
as expected, since required pixels are present in about half
as many clock cycles as in the baseline design. For example,
when a 7×7 filter is used, only four of the first seven lines
need to be buffered for the computation to start, since the out
of frame pixels in the window are replicated from those pixels.
Without border management, no output pixel is produced until
seven lines are buffered.

D. Comparison With Vivado HLS Filters

HLS is increasingly gaining popularity due to its higher
level design abstraction compared to HDL, enabling faster
design time and functional verification of hardware acceler-
ators. Ease of implementation in HLS, however, can come at
the cost of reduced performance and possibly poorer resource
efficiency, especially when considering processing patterns
that map well to low-level architectural features like the DSP

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 9

blocks. We used Vivado HLS 2018.2 with the image pro-
cessing libraries provided by Xilinx to explore how resource
utilization and throughput scales for filters generated from
high level code, assuming a 1280× 720 frame size. Pragmas
were used to unroll and pipeline the computation of the HLS
filters in order to enable streaming processing, reading, and
outputting a pixel in each clock cycle. The achieved frequency
for these designs is plotted with a dotted line in Fig. 7a.
All filter coefficients are configurable, resulting in the same
functionality and DSP block utilization as the proposed filter
architecture. Coefficient wordlength was set to 18 bits, and
inputs and outputs were set to 8 bits with 16-bit intermediate
results. The reduced wordlength compared to our proposed
architecture as described in Section II, reduces area somewhat,
but allows the tool to generate high throughput filters for
more competitive comparison. In Table IX, we summarize the
relative change in resource utilization and frequency for the
HLS filters compared to our proposed architecture, for the
same parameters, compared to our filter architecture as the
baseline. The reduced wordlengths result in reduced resource
utilization compared to the proposed filter architectures. This
becomes more apparent as the filter size increases, resulting
in deeper and wider adder trees, which in turn increases the
difference in overall resource utilization. The purpose of this
comparison, however, is primarily throughput and we see that
the HLS filters have at best 25% lower throughput and up to
40% less for larger filters. This demonstrates the effectiveness
of our proposed architecture for high throughput applications,
where some area overhead can be tolerated.

TABLE IX: Relative resource utilization and frequency for
Vivado HLS filters.

Filter Size (w × w)
5 7 11 15 19 23 25

Regs −36.83 −41.29 −59.71 −65.07 −66.04 −67.54 −68.20

LUTs −15.79 −22.74 −22.72 −28.71 −34.19 −39.91 −42.86

DSPs 0 0 0 0 0 0 0

Freq. (MHz) −25.84 −29.97 −31.68 −31.34 −38.86 −40.96 −33.42

E. Scalability Analysis

Spatial filters are widely used in configurations with differ-
ent filter and frame sizes as required for a variety of vision
applications. We therefore explore performance and resource
utilization when scaling the proposed architecture to three
frame sizes, 1280×720, 1920×1080 and 3840×2160, with 11
filter sizes ranging from 5×5 to 25×25. Results are illustrated
in Fig. 7a– 7f. Operating frequency varies from 525 to 400
MHz, decreasing as the filter size increases, due to the critical
path resulting from a wider adder tree and routing of more
coefficient products. The frequency fluctuations are a result
of the critical path moving through various parts of the adder
tree as the architecture grows, leading to routing congestion.
Meanwhile, frame size has minimal impact on operating
frequency as it primarily affects the size of the line buffers,
which are not in the critical path. These results compare
favorably with the DSP theoretical maximum frequency of
650 MHz on this Xilinx Virtex 7 device [29].

5 7 9 11 13 15 17 19 21 23 25
0

60

120

180

240

300

360

420

480

540

600

660

FILTER SIZE

T
hr

ou
gh

pu
t

(F
PS

)

1280× 720
1920× 1080
3840× 2160

Fig. 8: Achievable frame rates for varying filter and frame
sizes.

DSP block and flip-flop utilization are dependent on filter
size rather than frame size. DSP blocks are explicitly instanti-
ated for the multiplication of window pixels with the filter
coefficients, and hence are filter size dependent. Flip-flops
are used mainly for pipelining the computational datapath,
which in turn depends on the filter size. LUT utilization is
more complex, depending on both the filter and frame size. To
further analyze the scaling pattern, we show the LUTs utilized
as logic in Fig. 7e and the LUTs utilized as SRLs in Fig. 7f.
LUTs as logic are primarily in the adder tree and additionally
in the control logic. LUTs as shift registers are used primarily
in the line buffers and as a result their utilization depends
primarily on the number of lines that need to be buffered and
also on the width of those lines.

We finally show how the operating frequency translates to
throughput in FPS in Fig. 8. All designs perform well over the
30 FPS required for real-time processing, even on 4K videos.
60 FPS is achieved by the majority of designs, except 9×9
and larger filters on 4K frames, achieving 58 FPS for the
9×9 filter, and as low as 48 FPS for the 25×25 filter. To
determine whether newer FPGAs would allow processing at
60 FPS, we implemented the 25×25 filter for 4K frames on
a Zynq Ultrascale+ ZCU102, successfully satisfying the 500-
MHz constraint for 60 FPS, suggesting that the performance
of this architecture scales well with newer FPGA devices.

F. Comparisons With Previous Work

We now evaluate the proposed architecture against other
relevant work in the literature, with results summarized in
Table X. We extrapolate the achieved FPS based on the
assumption that these architectures offer a one pixel per cycle
streaming processing flow where this is not reported.

Licciardo et al. [11] implement a multiplierless design that
emulates the IEEE-754 floating point standard through the use
of fixed point adders and additional logic to manage exponent
alignment. Their proposed filter architecture is tailored to a
fixed set of coefficients and a fixed range of input values using
the Bachet weight decomposition theorem. Ortega-Cisneros et
al. [30] present a 3×3 filter with fixed coefficients obtaining
at best 318-MHz frequency. The work in [18] presents a

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 10

multiplierless, coefficient independent filter that also utilizes a
mechanism for zero padding at the borders. They also compare
against a baseline architecture that uses embedded multipliers
and other work in the literature, with the most relevant to this
article being [31]–[33]. Bailey and Ambikumar [10] explored
border handling in transposed form filters. More specifically,
they explored the additional cost of border management,
the cost of different border extension methods in transposed
form filters and the scaling of their proposed optimal border
extension mechanism. The scaling exploration takes place on
a morphological filter at seven filter sizes, ranging from 3×3
to 15×15, for a frame size of 1024×768. They also provide
implementation results for the overlapped priming and flushing
method presented in [26] on a direct form filter, a method
used in this article for comparison in Section IV-C. In this
particular case, the authors use a two-stage pipeline on the
combination tree and further improvements can be obtained
with a more heavily pipelined architecture. Meanwhile, our
proposed designs, fully pipeline the adder tree. The work
in [34] explores the performance and energy consumption of
FPGAs, GPUs, and multicore processors for sliding window
applications. The authors in this case implement three appli-
cations, sum of absolute differences (SAD), 2-D convolution,
and correntropy, on all platforms. They explore how their
architectures scale on a range of filter sizes, each for three
frame sizes: 640×480, 1280×720, and 1920×1080. For the
FPGA analysis, an Altera Stratix III E260 on a GiDEL Proc-
Star III board was used. Their 2-D convolution architectures
use 16-bit fixed point or 32-bit floating point representations,
obtaining operating frequencies of 104–115 and 103–114 MHz
respectively. That work concludes that FPGAs are more power
efficient, compared to GPUs and multicores, while providing
significant performance improvement for large input sizes.

The implementation results of the filter architectures in
this article demonstrate significant throughput improvement
compared to previous work in the literature, while being
flexible to adapt to varying coefficients dynamically. It is
also worth noting that the architectures we have presented
for comparison in this article, including the transposed form
filter and border management enabled design, also demonstrate
substantial improvements compared to previous work.

V. CONCLUSION

This article presented a detailed discussion of 2-D spatial
convolution filter design for FPGAs, proposing a scalable
direct form architecture that can be extended to support
border management, while offering high throughput through
architectural optimizations driven by the underlying FPGA
architecture, specifically the DSP blocks. Alternative adder
tree designs were compared, alongside a comparison against
transposed form implementations and an extended design with
border management using the overlapped priming and flushing
scheme. We demonstrated that the proposed architecture scales
to a wide range of filter sizes, and frame sizes up to 4K,
offering throughput of over 60 FPS in most cases, while further
enhancements can be achieved on more recent FPGA devices.
The proposed designs are optimized around the features of

TABLE X: Comparisons with related work.

Kernel
Size

FPGA
Platform

Freq.
(MHz)

Resolution FPS
Fixed

Kernel
Notes

[10] 5×5 Cyclone V 175 1024×768 223 Transposed form, DSP-based,
No border ext.

[10] 5×5 Cyclone V 152 1024×768 193 Direct form, Overlap prime
and flush [26], Two-stage
pipeline

[10] 5×5 Cyclone V 174 1024×768 221 Transposed form, Zero ext.
using Transform Coalescing

[10] 5×5 Cyclone V 185 1024×768 235 Transposed form, Zero ext.
using Combination Chain

[10] 5×5 Cyclone V 173 1024×768 219 Transposed form, Constant
ext.

[10] 5×5 Cyclone V 159 1024×768 202 Transposed form, Duplication

[10] 5×5 Cyclone V 188 1024×768 239 Transposed form, Two-Phase
duplication

[10] 5×5 Cyclone V 180 1024×768 229 Transposed form, Mirroring

[10] 5×5 Cyclone V 178 1024×768 226 Transposed form, Mirroring
with duplication

[11] 3×3 XC7V 213
640×480

1920×1080
3840×2160

692
102
25

times

×
×

Multiplierless, Emulates
IEEE-754, Optimized for
fixed set of coeffs. with fixed
input range

[18]

7×7 V4LX160 175 1920×1080
1920×1080
1920×1080
1920×1080

84
87
85
82

Multiplierless, Zero-padding,
Flexible Coefficients

11×11 V4LX160 181
22×22 V4LX160 177
30×30 V4LX160 171

[18]
7×7 V4LX160 183 1920×1080

1920×1080
1920×1080

88
68
72

Use of Multipliers11×11 V4LX160 142
22×22 V4LX160 149

[30] 3×3 Stratix V 318 1024×720 410 × Fixed Kernel

[31] 5×5 V5LX330 115 - - - Neural Network related

[32] 7×7 V4SX35 200 - - - Neural Network related

[33] 13×13 V4LX25 50 - - - -

[34]
4×4–

Stratix III ≤115 1920×1080 ≤55 Fixed point
25×25

[34]
4×4–

Stratix III ≤114 1920×1080 ≤55 Floating point
13×13

modern FPGA DSP blocks, used through explicit instantiation
to achieve high throughput.

REFERENCES

[1] D. G. Bailey, Design for Embedded Image Processing on FPGAs.
Singapore : John Wiley & Sons (Asia), 2011.

[2] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu,
X. Wang, G. Wang, J. Cai, and T. Chen, “Recent advances in convolu-
tional neural networks,” Pattern Recogn., vol. 77, no. C, pp. 354–377,
May 2018.

[3] S. Asano, T. Maruyama, and Y. Yamaguchi, “Performance comparison
of FPGA, GPU and CPU in image processing,” in Proceedings of In-
ternational Conference on Field Programmable Logic and Applications,
2009, pp. 126–131.

[4] D. Crookes, “Architectures for high performance image processing: The
future,” Journal of Systems Architecture, vol. 45, pp. 739–748, 1999.

[5] F. Schwiegelshohn, L. Gierke, and M. Hübner, “FPGA based traffic sign
detection for automotive camera systems,” in International Symposium
on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC),
June 2015.

[6] S. Wang, C. Zhang, Y. Shu, and Y. Liu, “Live video analytics with
FPGA-based smart cameras,” in Workshop on Hot Topics in Video
Analytics and Intelligent Edges, 2019, pp. 9–14.

[7] S. A. Fahmy, P. Y. K. Cheung, and W. Luk, “High-throughput one-
dimensional median and weighted median filters on FPGA,” in IET
Computers and Digital Techniques, vol. 3, no. 4, 2009, pp. 384–394.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 11

[8] A. Gabiger-Rose, M. Kube, R. Weigel, and R. Rose, “An FPGA-
based fully synchronized design of a bilateral filter for real-time image
denoising,” IEEE Transactions on Industrial Electronics, vol. 61, no. 8,
pp. 4093–4104, 2013.

[9] K. Vipin and S. A. Fahmy, “FPGA dynamic and partial reconfiguration:
A survey of architectures, methods, and applications,” ACM Computing
Surveys, vol. 51, no. 4, p. 72, 2018.

[10] D. G. Bailey and A. S. Ambikumar, “Border handling for 2D transpose
filter structures on an FPGA,” Journal of Imaging, vol. 4, no. 12, 2018.

[11] G. D. Licciardo, C. Cappetta, and L. Di Benedetto, “Design of a
Convolutional Two-Dimensional Filter in FPGA for Image Processing
Applications,” Computers, vol. 6, no. 2, 2017.

[12] B. McDanel, S. Q. Zhang, H. T. Kung, and X. Dong, “Full-stack
optimization for accelerating CNNs using powers-of-two weights with
FPGA validation,” in ACM International Conference on Supercomput-
ing, 2019, pp. 449–460.

[13] J. Park, K. Muhammad, and K. Roy, “High-performance FIR filter design
based on sharing multiplication,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 11, no. 2, pp. 244 –253, April 2003.

[14] P. Bougas, P. Kalivas, A. Tsirikos, and K. Pekmestzi, “Pipelined array-
based FIR filter folding,” IEEE Transactions on Circuits and Systems I:
Regular Papers,, vol. 52, no. 1, pp. 108–118, Jan 2005.

[15] Z. Ma, Y. Yang, Y. Liu, and A. A. Bharath, “Recurrently decomposable
2-D convolvers for FPGA-based digital image processing,” IEEE Trans-
actions on Circuits and Systems II: Express Briefs, vol. 63, no. 10, pp.
979–983, Oct 2016.

[16] Z. Tang, J. Zhang, and H. Min, “A high-speed, programmable, CSD
coefficient FIR filter,” IEEE Transactions on Consumer Electronics,
vol. 48, no. 4, pp. 834–837, nov 2002.

[17] S.-S. Jeng, H.-C. Lin, and S.-M. Chang, “FPGA implementation of FIR
filter using m-bit parallel distributed arithmetic,” in IEEE International
Symposium on Circuits and Systems, 2006.

[18] F. J. Toledo-Moreo, J. J. Martı́nez-Alvarez, J. Garrigós-Guerrero, and
J. M. Ferrández-Vicente, “FPGA-based architecture for the real-time
computation of 2-D convolution with large kernel size,” Journal of
Systems Architecture, vol. 58, no. 8, pp. 277–285, 2012.

[19] S. Mirzaei, A. Hosangadi, and R. Kastner, “FPGA implementation of
high speed FIR filters using add and shift method,” in International
Conference on Computer Design, 2006, pp. 308–313.

[20] H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell, “The iDEA
DSP block-based soft processor for FPGAs,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 7, no. 3, pp. 19:1–
19:23, 2014.

[21] A. K. Jain, D. L. Maskell, and S. A. Fahmy, “Throughput Oriented
FPGA Overlays Using DSP Blocks,” in Proceedings of the Design,
Automation and Test in Europe Conference (DATE), 2016.

[22] A. K. Jain, X. Li, P. Singhai, D. L. Maskell, and S. A. Fahmy, “DeCO: a
DSP block based FPGA accelerator overlay with low overhead intercon-
nect,” in IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2016, pp. 1–8.

[23] B. Ronak and S. A. Fahmy, “Mapping for maximum performance on
FPGA DSP blocks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, no. 4, pp. 573–585, 2016.

[24] B. Ronak and S. A. Fahmy, “Multipumping flexible DSP blocks for
resource reduction on Xilinx FPGAs,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 36, no. 9, pp.
1471–1482, Sep. 2017.

[25] HDL coding practices to accelerate design performance. Xilinx White
Paper (WP231), 2006.

[26] D. Bailey, “Image border management for FPGA based filters,” in IEEE
International Symposium on Electronic Design, Test and Application
(DELTA), 2011, pp. 144 –149.

[27] A. Benkrid, K. Benkrid, and D. Crookes, “A novel FIR filter architecture
for efficient signal boundary handling on Xilinx Virtex FPGAs,” in
IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2003, pp. 273–275.

[28] C. Choo and P. Verma, “A real-time bit-serial rank filter implementation
using Xilinx FPGA,” in Proc SPIE. 6811, Real-Time Image Processing,
2008, p. 68110F.

[29] Virtex-7 T and XT FPGAs Data Sheet: DC and AC Switching Charac-
teristics (DS183), V1.28, March 2019.

[30] S. Ortega-Cisneros, M. A. Carrazco-Dı́az, A. Pedroza de-la Crúz, J. J.
Raygoza-Panduro, F. Sandoval-Ibarra, and J. Rivera-Domı́nguez, “Real
time hardware accelerator for image filtering,” in Progress in Pat-
tern Recognition, Image Analysis, Computer Vision, and Applications.
Springer International Publishing, 2014, pp. 80–87.

[31] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic,
E. Cosatto, and H. P. Graf, “A massively parallel coprocessor for
convolutional neural networks,” in Proceedings of the IEEE Interna-
tional Conference on Application-specific Systems, Architectures and
Processors, July 2009, pp. 53–60.

[32] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “CNP: An FPGA-based
processor for convolutional networks,” in Proceedings of the Interna-
tional Conference on Field Programmable Logic and Applications, Aug
2009, pp. 32–37.

[33] F. Fons, M. Fons, and E. Cantó, “Run-time self-reconfigurable 2D
convolver for adaptive image processing,” Microelectronics Journal,
vol. 42, no. 1, pp. 204–217, 2011.

[34] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A performance and energy
comparison of FPGAs, GPUs, and multicores for sliding-window appli-
cations,” in Proceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, 2012, pp. 47–56.

Lenos Ioannou (Student Member, IEEE) received
the B.Sc. degree in electrical engineering from the
Cyprus University of Technology, Limassol, Cyprus,
in 2014, and the M.Sc. degree in system on chip
from the University of Southampton, Southampton,
U.K., in 2015. He is currently working toward
the Ph.D. degree at the Adaptive and Reconfig-
urable Computing Laboratory, University of War-
wick, Coventry, U.K.

His research interests include embedded comput-
ing architectures and accelerators on reconfigurable platforms.

Abdullah Al-Dujaili (Member, IEEE) received
the B.Eng. degree from Universiti Teknologi
PETRONAS, Seri Iskandar, Malaysia, in 2012, and
the Ph.D. degree from Nanyang Technological Uni-
versity, Singapore, in 2017.

He is a Research Scientist with the Algorithmic
Systems Group, Analog Devices, Norwood, MA,
USA. He was previously a Postdoctoral Associate
with CSAIL, MIT, Cambridge, MA, USA, from
2017 to 2019, and a Data Scientist at Grab, Sin-
gapore, solving transportation challenges at the in-

terface of optimization and machine learning techniques. He spent time as
a Research Intern at institutes, such as the Upper Austria University of
Applied Sciences, Wels, Austria, Aeste Works, Kuala Lumpur, Malaysia,
IRISA Laboratory, France, the National University of Singapore, Singapore,
and the Institute for Infocomm Research, Singapore

Dr. Al-Dujaili received the PETRONAS Carigali Country Award in 2008,
the Singapore International Graduate Award (SINGA) in 2012, the 2nd
Runner-Up Award at BBComp at GECCO’15, and the Best Poster Award
at the IBM AI Research Week in Cambridge, in 2018.

Suhaib A. Fahmy (Senior Member, IEEE) received
the M.Eng. degree in information systems engineer-
ing and the Ph.D. degree in electrical and electronic
engineering from Imperial College London, London,
U.K., in 2003 and 2007, respectively.

From 2007 to 2009, he was a Research Fellow
with Trinity College Dublin, Dublin, Ireland, and
a Visiting Research Engineer with Xilinx Research
Labs, Dublin. From 2009 to 2015, he was an As-
sistant Professor with the School of Computer Engi-
neering, Nanyang Technological University, Singa-

pore. Since 2015, he has been an Associate Professor and now a Reader
in Computer Engineering with the School of Engineering, University of
Warwick, Coventry, U.K. His research interests include reconfigurable com-
puting, high-level system design, and computational acceleration of complex
algorithms.

Dr. Fahmy is a Senior Member of the ACM and a Chartered Engineer and
member of the IET. He was a recipient of the Best Paper Award at the IEEE
Conference on Field Programmable Technology in 2012, the IBM Faculty
Award in 2013 and 2017, and the ACM TODAES Best Paper Award in 2019.

