3 research outputs found

    Stepping Stones to Inductive Synthesis of Low-Level Looping Programs

    Full text link
    Inductive program synthesis, from input/output examples, can provide an opportunity to automatically create programs from scratch without presupposing the algorithmic form of the solution. For induction of general programs with loops (as opposed to loop-free programs, or synthesis for domain-specific languages), the state of the art is at the level of introductory programming assignments. Most problems that require algorithmic subtlety, such as fast sorting, have remained out of reach without the benefit of significant problem-specific background knowledge. A key challenge is to identify cues that are available to guide search towards correct looping programs. We present MAKESPEARE, a simple delayed-acceptance hillclimbing method that synthesizes low-level looping programs from input/output examples. During search, delayed acceptance bypasses small gains to identify significantly-improved stepping stone programs that tend to generalize and enable further progress. The method performs well on a set of established benchmarks, and succeeds on the previously unsolved "Collatz Numbers" program synthesis problem. Additional benchmarks include the problem of rapidly sorting integer arrays, in which we observe the emergence of comb sort (a Shell sort variant that is empirically fast). MAKESPEARE has also synthesized a record-setting program on one of the puzzles from the TIS-100 assembly language programming game.Comment: AAAI 201

    Code Building Genetic Programming

    Full text link
    In recent years the field of genetic programming has made significant advances towards automatic programming. Research and development of contemporary program synthesis methods, such as PushGP and Grammar Guided Genetic Programming, can produce programs that solve problems typically assigned in introductory academic settings. These problems focus on a narrow, predetermined set of simple data structures, basic control flow patterns, and primitive, non-overlapping data types (without, for example, inheritance or composite types). Few, if any, genetic programming methods for program synthesis have convincingly demonstrated the capability of synthesizing programs that use arbitrary data types, data structures, and specifications that are drawn from existing codebases. In this paper, we introduce Code Building Genetic Programming (CBGP) as a framework within which this can be done, by leveraging programming language features such as reflection and first-class specifications. CBGP produces a computational graph that can be executed or translated into source code of a host language. To demonstrate the novel capabilities of CBGP, we present results on new benchmarks that use non-primitive, polymorphic data types as well as some standard program synthesis benchmarks.Comment: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, Genetic Programming Trac

    Nic McPhee

    No full text
    Thomas Helmuth, Nicholas Freitag McPhee, and Lee Spector, 2018. Program synthesis using uniform mutation by addition and deletion. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO \u2718), Hernan Aguirre (Ed.). ACM, New York, NY, USA, 1127-1134.https://digitalcommons.morris.umn.edu/cosa2018/1028/thumbnail.jp
    corecore