67,518 research outputs found
Using a high fidelity CCGT simulator for building prognostic systems
Pressure to reduce maintenance costs in power utilities has resulted in growing interest in prognostic monitoring systems. Accurate prediction of the occurrence of faults and failures would result not only in improved system maintenance schedules but also in improved availability and system efficiency. The desire for such a system has driven research into the emerging field of prognostics for complex systems. At the same time there is a general move towards implementing high fidelity simulators of complex systems especially within the power generation field, with the nuclear power industry taking the lead. Whilst the simulators mainly function in a training capacity, the high fidelity of the simulations can also allow representative data to be gathered. Using simulators in this way enables systems and components to be damaged, run to failure and reset all without cost or danger to personnel as well as allowing fault scenarios to be run faster than real time. Consequently, this allows failure data to be gathered which is normally otherwise unavailable or limited, enabling analysis and research of fault progression in critical and high value systems. This paper presents a case study of utilising a high fidelity industrial Combined Cycle Gas Turbine (CCGT) simulator to generate fault data, and shows how this can be employed to build a prognostic system. Advantages and disadvantages of this approach are discussed
A new modelling framework for statistical cumulus dynamics
We propose a new modelling framework suitable for the description of atmospheric convective systems as a collection of distinct plumes. The literature contains many examples of models for collections of plumes in which strong simplifying assumptions are made, a diagnostic dependence of convection on the large-scale environment and the limit of many plumes often being imposed from the outset. Some recent studies have sought to remove one or the other of those assumptions. The proposed framework removes both, and is explicitly time-dependent and stochastic in its basic character. The statistical dynamics of the plume collection are defined through simple probabilistic rules applied at the level of individual plumes, and van Kampen's system size expansion is then used to construct the macroscopic limit of the microscopic model. Through suitable choices of the microscopic rules, the model is shown to encompass previous studies in the appropriate limits, and to allow their natural extensions beyond those limits
Clinical prediction models to inform individualized decision-making in subfertile couples : a stratified medicine approach
Funding This work was supported by a Chief Scientist Office Postdoctoral Training Fellowship in Health Services Research and Health of the Public Research (Ref PDF/12/06). The views expressed in this paper represent the views of the authors and not necessarily the views of the funding body.Peer reviewedPostprin
Evaluating methodological quality of Prognostic models Including Patient-reported HeAlth outcomes in oncologY (EPIPHANY): A systematic review protocol
Introduction While there is mounting evidence of the independent prognostic value of patient-reported outcomes (PROs) for overall survival (OS) in patients with cancer, it is known that the conduct of these studies may hold a number of methodological challenges. The aim of this systematic review is to evaluate the quality of published studies in this research area, in order to identify methodological and statistical issues deserving special attention and to also possibly provide evidence-based recommendations. Methods and analysis An electronic search strategy will be performed in PubMed to identify studies developing or validating a prognostic model which includes PROs as predictors. Two reviewers will independently be involved in data collection using a predefined and standardised data extraction form including information related to study characteristics, PROs measures used and multivariable prognostic models. Studies selection will be reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, with data extraction form using fields from the Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS) checklist for multivariable models. Methodological quality assessment will also be performed and will be based on prespecified domains of the CHARMS checklist. As a substantial heterogeneity of included studies is expected, a narrative evidence synthesis will also be provided. Ethics and dissemination Given that this systematic review will use only published data, ethical permissions will not be required. Findings from this review will be published in peer-reviewed scientific journals and presented at major international conferences. We anticipate that this review will contribute to identify key areas of improvement for conducting and reporting prognostic factor analyses with PROs in oncology and will lay the groundwork for developing future evidence-based recommendations in this area of research. Prospero registration number CRD42018099160
Impact of depth of response on survival in patients treated with cobimetinib ± vemurafenib: pooled analysis of BRIM-2, BRIM-3, BRIM-7 and coBRIM.
BackgroundThis pooled analysis investigated the prognostic value of depth of response in two cohorts of patients with BRAFV600-mutated metastatic melanoma treated with vemurafenib or cobimetinib plus vemurafenib.MethodsThe data were pooled from BRIM-2, BRIM-3, BRIM-7 and coBRIM. Association of depth of response with survival was estimated by Cox proportional hazards regression, adjusted for clinically relevant covariates. Depth of response was analysed in previously identified prognostic subgroups based on disease characteristics and gene signatures.ResultsGreater tumour reduction and longer time to maximal response were significantly associated with longer progression-free survival (PFS) and overall survival (OS) when evaluated as continuous variables. Patients with the deepest responses had long-lasting survival outcomes (median PFS: 14 months; OS: 32 months with vemurafenib; not estimable with cobimetinib plus vemurafenib). Cobimetinib plus vemurafenib improved depth of response versus vemurafenib monotherapy regardless of other prognostic factors, including gene signatures.ConclusionsGreater depth of response was associated with improved survival, supporting its utility as a measure of treatment efficacy in melanoma and further evaluation of its incorporation into existing prognostic models. Cobimetinib plus vemurafenib improved outcomes across quartiles of response regardless of prognostic factors or gene signatures and provided durable survival benefits in patients with deep responses
Building Cox-Type Structured Hazard Regression Models with Time-Varying Effects
In recent years, flexible hazard regression models based on penalised splines have been developed that allow us to extend the classical Cox-model via the inclusion of time-varying and nonparametric effects. Despite their immediate appeal in terms of flexibility, these models introduce additional difficulties when a subset of covariates and the corresponding modelling alternatives have to be chosen. We present an analysis of data from a specific patient population with 90-day survival as the response variable. The aim is to determine a sensible prognostic model where some variables have to be included due to subject-matter knowledge while other variables are subject to model selection. Motivated by this application, we propose a twostage stepwise model building strategy to choose both the relevant covariates and the corresponding modelling alternatives within the choice set of possible covariates simultaneously. For categorical covariates, competing modelling approaches are linear effects and time-varying effects, whereas nonparametric modelling provides a further alternative in case of continuous covariates. In our data analysis, we identified a prognostic model containing both smooth and time-varying effects
A Similarity-Based Prognostics Approach for Remaining Useful Life Prediction
Physics-based and data-driven models are the two major prognostic approaches in the literature with their own advantages and disadvantages. This paper presents a similarity-based data-driven prognostic methodology and efficiency analysis study on remaining useful life estimation results. A similarity-based prognostic model is modified to employ the most similar training samples for RUL estimations on each time instance. The presented model is tested on; Virkler’s fatigue crack growth dataset, a drilling process degradation dataset, and a sliding chair degradation of a turnout system dataset. Prediction performances are compared utilizing an evaluation metric. Efficiency analysis of optimization results show that the modified similarity-based model performs better than the original definition
The science of clinical practice: disease diagnosis or patient prognosis? Evidence about "what is likely to happen" should shape clinical practice.
BACKGROUND: Diagnosis is the traditional basis for decision-making in clinical practice. Evidence is often lacking about future benefits and harms of these decisions for patients diagnosed with and without disease. We propose that a model of clinical practice focused on patient prognosis and predicting the likelihood of future outcomes may be more useful. DISCUSSION: Disease diagnosis can provide crucial information for clinical decisions that influence outcome in serious acute illness. However, the central role of diagnosis in clinical practice is challenged by evidence that it does not always benefit patients and that factors other than disease are important in determining patient outcome. The concept of disease as a dichotomous 'yes' or 'no' is challenged by the frequent use of diagnostic indicators with continuous distributions, such as blood sugar, which are better understood as contributing information about the probability of a patient's future outcome. Moreover, many illnesses, such as chronic fatigue, cannot usefully be labelled from a disease-diagnosis perspective. In such cases, a prognostic model provides an alternative framework for clinical practice that extends beyond disease and diagnosis and incorporates a wide range of information to predict future patient outcomes and to guide decisions to improve them. Such information embraces non-disease factors and genetic and other biomarkers which influence outcome. SUMMARY: Patient prognosis can provide the framework for modern clinical practice to integrate information from the expanding biological, social, and clinical database for more effective and efficient care
- …
