273 research outputs found

    Optimal Resource Allocation with Delay Guarantees for Network Slicing in Disaggregated RAN

    Full text link
    In this article, we propose a novel formulation for the resource allocation problem of a sliced and disaggregated Radio Access Network (RAN) and its transport network. Our proposal assures an end-to-end delay bound for the Ultra-Reliable and Low-Latency Communication (URLLC) use case while jointly considering the number of admitted users, the transmission rate allocation per slice, the functional split of RAN nodes and the routing paths in the transport network. We use deterministic network calculus theory to calculate delay along the transport network connecting disaggregated RANs deploying network functions at the Radio Unit (RU), Distributed Unit (DU), and Central Unit (CU) nodes. The maximum end-to-end delay is a constraint in the optimization-based formulation that aims to maximize Mobile Network Operator (MNO) profit, considering a cash flow analysis to model revenue and operational costs using data from one of the world's leading MNOs. The optimization model leverages a Flexible Functional Split (FFS) approach to provide a new degree of freedom to the resource allocation strategy. Simulation results reveal that, due to its non-linear nature, there is no trivial solution to the proposed optimization problem formulation. Our proposal guarantees a maximum delay for URLLC services while satisfying minimal bandwidth requirements for enhanced Mobile BroadBand (eMBB) services and maximizing the MNO's profit.Comment: 21 pages, 10 figures. For the associated GitHub repository, see https://github.com/LABORA-INF-UFG/paper-FGKCJ-202

    Resource Calendaring for Mobile Edge Computing in 5G Networks

    Get PDF
    Mobile Edge Computing (MEC) is a key technology for the deployment of next generation (5G and beyond) mobile networks, specifically for reducing the latency experienced by mobile users which require ultra-low latency, high bandwidth, as well as real-time access to the radio network. In this paper, we propose an optimization framework that considers several key aspects of the resource allocation problem for MEC, by carefully modeling and optimizing the allocation of network resources including computation and storage capacity available on network nodes as well as link capacity. Specifically, both an exact optimization model and an effective heuristic are provided, jointly optimizing (1) the connections admission decision (2) their scheduling, also called calendaring (3) and routing as well as (4) the decision of which nodes will serve such connections and (5) the amount of processing and storage capacity reserved on the chosen nodes. Numerical experiments are conducted in several real-size network scenarios, which demonstrate that the heuristic performs close to the optimum in all the considered network scenarios, while exhibiting a low computing time

    Cost-efficient Slicing in Virtual Radio Access Networks

    Get PDF
    Network slicing is a promising technique that has vastly increased the man- ifoldness of network services to be supported through isolated slices in a shared radio access network (RAN). Due to resource isolation, effective re- source allocation for coexisting multiple network slices is essential to maxi- mize network resource efficiency. However, the increased network flexibility and programmability offered by virtualized radio access networks (vRANs) come at the expense of a higher consumption of computing resources at the network edge. Additionally, the relationship between resource efficiency and computing cost minimization is still fuzzy. In this paper, we first perform extensive experiments using the vRAN testbed we developed and assess the vRAN resource consumption under different settings and a varying number of users. Then, leveraging our experimental findings, we formulate the prob- lem of cost-efficient network slice dimensioning, named cost-efficient slicing (CES), which maximizes the difference between total utility and CPU cost of network slices. Numerical results confirm that our solution leads to a cost-efficient resource slicing, while also accomplishing performance isolation and guaranteeing the target data rate and delay specified in the service level agreements

    Techno-Economic Analysis of 5G Non-Public Network Architectures

    Get PDF
    • …
    corecore