2,575 research outputs found

    From geographically dispersed data centers towards hierarchical edge computing

    Get PDF
    Internet scale data centers are generally dispersed in different geographical regions. While the main goal of deploying the geographically dispersed data centers is to provide redundancy, scalability and high availability, the geographic dispersity provides another opportunity for efficient employment of global resources, e.g., utilizing price-diversity in electricity markets or utilizing locational diversity in renewable power generation. In other words, an efficient approach for geographical load balancing (GLB) across geo-dispersed data centers not only can maximize the utilization of green energy but also can minimize the cost of electricity. However, due to the different costs and disparate environmental impacts of the renewable energy and brown energy, such a GLB approach should tap on the merits of the separation of green energy utilization maximization and brown energy cost minimization problems. To this end, the notion of green workload and green service rate, versus brown workload and brown service rate, respectively, to facilitate the separation of green energy utilization maximization and brown energy cost minimization problems is proposed. In particular, a new optimization framework to maximize the profit of running geographically dispersed data centers based on the accuracy of the G/D/1 queueing model, and taking into consideration of multiple classes of service with individual service level agreement deadline for each type of service is developed. A new information flow graph based model for geo-dispersed data centers is also developed, and based on the developed model, the achievable tradeoff between total and brown power consumption is characterized. Recently, the paradigm of edge computing has been introduced to push the computing resources away from the data centers to the edge of the network, thereby reducing the communication bandwidth requirement between the sources of data and the data centers. However, it is still desirable to investigate how and where at the edge of the network the computation resources should be provisioned. To this end, a hierarchical Mobile Edge Computing (MEC) architecture in accordance with the principles of LTE Advanced backhaul network is proposed and an auction-based profit maximization approach which effectively facilitates the resource allocation to the subscribers of the MEC network is designed. A hierarchical capacity provisioning framework for MEC that optimally budgets computing capacities at different hierarchical edge computing levels is also designed. The proposed scheme can efficiently handle the peak loads at the access point locations while coping with the resource poverty at the edge. Moreover, the code partitioning problem is extended to a scheduling problem over time and the hierarchical mobile edge network, and accordingly, a new technique that leads to the optimal code partitioning in a reasonable time even for large-sized call trees is proposed. Finally, a novel NOMA augmented edge computing model that captures the gains of uplink NOMA in MEC users\u27 energy consumption is proposed

    Energy Portfolio Optimization of Data Centers

    Get PDF
    Data centers have diverse options to procure electricity. However, the current literature on exploiting these options is very fractured. Specifically, it is still not clear how utilizing one energy option may affect selecting other energy options. To address this open problem, we propose a unified energy portfolio optimization framework that takes into consideration a broad range of energy choices for data centers. Despite the complexity and nonlinearity of the original models, the proposed analysis boils down to solving tractable linear mixed-integer stochastic programs. Using experimental electricity market and Internet workload data, various insightful numerical observations are reported. It is shown that the key to link different energy options with different short- and long-term profit characteristics is to conduct risk management at different time horizons. Also, there is a direct relationship between data centers' service-level agreement parameters and their ability to exploit certain energy options. The use of on-site storage and the deployment of geographical workload distribution can particularly help data centers in utilizing high-risk energy choices, such as offering ancillary services or participating in wholesale electricity markets

    Efficient cloud computing system operation strategies

    Get PDF
    Cloud computing systems have emerged as a new paradigm of computing systems by providing on demand based services which utilize large size computing resources. Service providers offer Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) to users depending on their demand and users pay only for the user resources. The Cloud system has become a successful business model and is expanding its scope through collaboration with various applications such as big data processing, Internet of Things (IoT), robotics, and 5G networks. Cloud computing systems are composed of large numbers of computing, network, and storage devices across the geographically distributed area and multiple tenants employ the cloud systems simultaneously with heterogeneous resource requirements. Thus, efficient operation of cloud computing systems is extremely difficult for service providers. In order to maximize service providers\u27 profit, the cloud systems should be able to serve large numbers of tenants while minimizing the OPerational EXpenditure (OPEX). For serving as many tenants as possible tenants using limited resources, the service providers should implement efficient resource allocation for users\u27 requirements. At the same time, cloud infrastructure consumes a significant amount of energy. According to recent disclosures, Google data centers consumed nearly 300 million watts and Facebook\u27s data centers consumed 60 million watts. Explosive traffic demand for data centers will keep increasing because of expansion of mobile and cloud traffic requirements. If service providers do not develop efficient ways for energy management in their infrastructures, this will cause significant power consumption in running their cloud infrastructures. In this thesis, we consider optimal datasets allocation in distributed cloud computing systems. Our objective is to minimize processing time and cost. Processing time includes virtual machine processing time, communication time, and data transfer time. In distributed Cloud systems, communication time and data transfer time are important component of processing time because data centers are distributed geographically. If we place data sets far from each other, this increases the communication and data transfer time. The cost objective includes virtual machine cost, communication cost, and data transfer cost. Cloud service providers charge for virtual machine usage according to usage time of virtual machine. Communication cost and transfer cost are charged based on transmission speed of data and data set size. The problem of allocating data sets to VMs in distributed heterogeneous clouds is formulated as a linear programming model with two objectives: the cost and processing time. After finding optimal solutions of each objective function, we use a heuristic approach to find the Pareto front of multi-objective linear programming problem. In the simulation experiment, we consider a heterogeneous cloud infrastructure with five different types of cloud service provider resource information, and we optimize data set placement by guaranteeing Pareto optimality of the solutions. Also, this thesis proposes an adaptive data center activation model that consolidates adaptive activation of switches and hosts simultaneously integrated with a statistical request prediction algorithm. The learning algorithm predicts user requests in predetermined interval by using a cyclic window learning algorithm. Then the data center activates an optimal number of switches and hosts in order to minimize power consumption that is based on prediction. We designed an adaptive data center activation model by using a cognitive cycle composed of three steps: data collection, prediction, and activation. In the request prediction step, the prediction algorithm forecasts a Poisson distribution parameter lambda in every determined interval by using Maximum Likelihood Estimation (MLE) and Local Linear Regression (LLR) methods. Then, adaptive activation of the data center is implemented with the predicted parameter in every interval. The adaptive activation model is formulated as a Mixed Integer Linear Programming (MILP) model. Switches and hosts are modeled as M/M/1 and M/M/c queues. In order to minimize power consumption of data centers, the model minimizes the number of activated switches, hosts, and memory modules while guaranteeing Quality of Service (QoS). Since the problem is NP-hard, we use the Simulated Annealing algorithm to solve the model. We employ Google cluster trace data to simulate our prediction model. Then, the predicted data is employed to test adaptive activation model and observed energy saving rate in every interval. In the experiment, we could observe that the adaptive activation model saves 30 to 50% of energy compared to the full operation state of data center in practical utilization rates of data centers. Network Function Virtualization (NFV) emerged as a game changer in network market for efficient operation of the network infrastructure. Since NFV transforms the dedicated physical devices designed for specific network function to software-based Virtual Machines (VMs), the network operators expect to reduce a significant Capital Expenditure (CAPEX) and Operational Expenditure (OPEX). Softwarized VMs can be implemented on any commodity servers, so network operators can design flexible and scalable network architecture through efficient VM placement and migration algorithms. In this thesis, we study a joint problem of Virtualized Network Function (VNF) resource allocation and NFV-Service Chain (NFV-SC) placement problem in Software Defined Network (SDN) based hyper-scale distributed cloud computing infrastructure. The objective of the problem is minimizing the power consumption of the infrastructure while enforcing Service Level Agreement (SLA) of users. We employ an M/G/1/K queuing network approximation analysis for the NFV-SC model. The communication time between VNFs is considered in the NFV-SC placement because it influences the performance of NFV-SC in the highly distributed infrastructure environment. The joint problem is modeled by a Mixed Integer Non-linear Programming (MINP) model. However, the problem is intractable in large size infrastructures due to NP-hardness of the problem. We therefore propose a heuristic algorithm which splits the problem into two sub-problems: resource allocation and the NFV-SC embedding. In the numerical analysis, we could observe that the proposed algorithm outperforms the traditional bin packing algorithms in terms of power consumption and SLA assurance. In this thesis, we propose efficient cloud infrastructure management strategies from a single data center point of view to hyper-scale distributed cloud computing infrastructure for profitable cloud system operation. The management schemes are proposed with various objectives such as Quality of Service (Qos), performance, latency, and power consumption. We use efficient mathematical modeling strategies such as Linear Programming (LP), Mixed Integer Linear Programming (MILP), Mixed Integer Non-linear Programming(MINP), convex programming, queuing theory, and probabilistic modeling strategies and prove the efficiency of the proposed strategies through various simulations

    Grain silo location-allocation problem with dwell time for optimization of food grain supply chain network

    Get PDF
    In the last few decades, production and procurement of food grain in India have steadily increased, however, storage capacity has not increased proportionally. The government of India (GOI) is establishing the various capacitated silos across the country to bridge this storage capacity gap. This paper presents a novel integrated multi-objective, multi-modal and multiperiod mathematical model for grain silo location-allocation problem with Dwell time to support the decision-making process of GOI. Two conflicting objectives- minimization of total supply chain network cost and total lead time (transit and dwell time) are simultaneously optimized using two Pareto based multi-objective algorithms with calibrated parameters

    Energy and performance-optimized scheduling of tasks in distributed cloud and edge computing systems

    Get PDF
    Infrastructure resources in distributed cloud data centers (CDCs) are shared by heterogeneous applications in a high-performance and cost-effective way. Edge computing has emerged as a new paradigm to provide access to computing capacities in end devices. Yet it suffers from such problems as load imbalance, long scheduling time, and limited power of its edge nodes. Therefore, intelligent task scheduling in CDCs and edge nodes is critically important to construct energy-efficient cloud and edge computing systems. Current approaches cannot smartly minimize the total cost of CDCs, maximize their profit and improve quality of service (QoS) of tasks because of aperiodic arrival and heterogeneity of tasks. This dissertation proposes a class of energy and performance-optimized scheduling algorithms built on top of several intelligent optimization algorithms. This dissertation includes two parts, including background work, i.e., Chapters 3–6, and new contributions, i.e., Chapters 7–11. 1) Background work of this dissertation. Chapter 3 proposes a spatial task scheduling and resource optimization method to minimize the total cost of CDCs where bandwidth prices of Internet service providers, power grid prices, and renewable energy all vary with locations. Chapter 4 presents a geography-aware task scheduling approach by considering spatial variations in CDCs to maximize the profit of their providers by intelligently scheduling tasks. Chapter 5 presents a spatio-temporal task scheduling algorithm to minimize energy cost by scheduling heterogeneous tasks among CDCs while meeting their delay constraints. Chapter 6 gives a temporal scheduling algorithm considering temporal variations of revenue, electricity prices, green energy and prices of public clouds. 2) Contributions of this dissertation. Chapter 7 proposes a multi-objective optimization method for CDCs to maximize their profit, and minimize the average loss possibility of tasks by determining task allocation among Internet service providers, and task service rates of each CDC. A simulated annealing-based bi-objective differential evolution algorithm is proposed to obtain an approximate Pareto optimal set. A knee solution is selected to schedule tasks in a high-profit and high-quality-of-service way. Chapter 8 formulates a bi-objective constrained optimization problem, and designs a novel optimization method to cope with energy cost reduction and QoS improvement. It jointly minimizes both energy cost of CDCs, and average response time of all tasks by intelligently allocating tasks among CDCs and changing task service rate of each CDC. Chapter 9 formulates a constrained bi-objective optimization problem for joint optimization of revenue and energy cost of CDCs. It is solved with an improved multi-objective evolutionary algorithm based on decomposition. It determines a high-quality trade-off between revenue maximization and energy cost minimization by considering CDCs’ spatial differences in energy cost while meeting tasks’ delay constraints. Chapter 10 proposes a simulated annealing-based bees algorithm to find a close-to-optimal solution. Then, a fine-grained spatial task scheduling algorithm is designed to minimize energy cost of CDCs by allocating tasks among multiple green clouds, and specifies running speeds of their servers. Chapter 11 proposes a profit-maximized collaborative computation offloading and resource allocation algorithm to maximize the profit of systems and guarantee that response time limits of tasks are met in cloud-edge computing systems. A single-objective constrained optimization problem is solved by a proposed simulated annealing-based migrating birds optimization. This dissertation evaluates these algorithms, models and software with real-life data and proves that they improve scheduling precision and cost-effectiveness of distributed cloud and edge computing systems

    Domestic Market Integration

    Get PDF
    The paper looks into the level of integration of commodity markets in India, across centres and states using consumer price data. It measures the extent to which domestic markets for goods in India are integrated, and recommends policy options to facilitate integration. The paper addresses questions: Are domestic markets for goods integrated across states? Has market integration increased over time? What are the policy options to facilitate integration? The paper tests the methodology proposed by Bradford and Lawrence (2004) on the consumer prices of goods in major states across India. This is then repeated using consumer price data at two points in time (1994 and 2004), allowing an assessment of whether Indian markets have integrated over time. Market integration is also tested for individual commodities across markets. The annual consumer prices for commodities were compiled from the Labour Bureau series of average monthly consumer prices of commodities for Industrial workers across 70 constituent centres in 18 states and monthly data was compiled from the Indian Labour Journal, a monthly publication from Labour Bureau, Ministry of Labour Government of India. Authors are thankful to Labour Bureau, Shimla for providing data on consumer prices at the disaggregated level. This study was commissioned by The World Bank as the background paper on market integration in The World Bank Development Policy Review: Inclusive Growth and Service Delivery: Building on India's Success. July 2006Market Integration, Consumer Prices, Primary Food, Manufactured Goods, India

    Domestic Market Integration

    Get PDF
    The paper looks into the level of integration of commodity markets in India, across centres and states using consumer price data. It measures the extent to which domestic markets for goods in India are integrated, and recommends policy options to facilitate integration. The paper addresses questions : Are domestic markets for goods integrated across states? Has market integration increased over time? What are the policy options to facilitate integration? The paper tests the methodology proposed by Bradford and Lawrence (2004) on the consumer prices of goods in major states across India. This is then repeated using consumer price data at two points in time (1994 and 2004), allowing an assessment of whether Indian markets have integrated over time. Market integration is also tested for individual commodities across markets. The annual consumer prices for commodities were compiled from the Labour Bureau series of average monthly consumer prices of commodities for Industrial workers across 70 constituent centres in 18 states and monthly data was compiled from the Indian Labour Journal, a monthly publication from Labour Bureau, Ministry of Labour Government of India. Authors are thankful to Labour Bureau, Shimla for providing data on consumer prices at the disaggregated level.Market Integration, Consumer Prices, Primary Food, Manufactured Goods, India
    • …
    corecore