10 research outputs found

    Profinite completions and canonical extensions of Heyting algebras

    Get PDF
    We show that the profinite completions and canonical extensions of bounded distributive lattices and of Boolean algebras coincide. We characterize dual spaces of canonical extensions of bounded distributive lattices and of Heyting algebras in terms of Nachbin order-compactifications. We give the dual description of the profinite completion H of a Heyting algebra H, and characterize the dual space of H. We also give a necessary and sufficient condition for the profinite completion of H to coincide with its canonical extension, and provide a new criterion for a variety V of Heyting algebras to be finitely generated by showing that V is finitely generated if and only if the profinite completion of every member of V coincides with its canonical extension. From this we obtain a new proof of a well-known theorem that every finitely generated variety of Heyting algebras is canonical

    MacNeille completion and profinite completion can coincide on finitely generated modal algebras

    Get PDF
    Following Bezhanishvili & Vosmaer, we confirm a conjecture of Yde Venema by piecing together results from various authors. Specifically, we show that if A\mathbb{A} is a residually finite, finitely generated modal algebra such that HSP(A)\operatorname{HSP}(\mathbb{A}) has equationally definable principal congruences, then the profinite completion of A\mathbb{A} is isomorphic to its MacNeille completion, and \Diamond is smooth. Specific examples of such modal algebras are the free K4\mathbf{K4}-algebra and the free PDL\mathbf{PDL}-algebra.Comment: 5 page

    Canonical extensions and ultraproducts of polarities

    Full text link
    J{\'o}nsson and Tarski's notion of the perfect extension of a Boolean algebra with operators has evolved into an extensive theory of canonical extensions of lattice-based algebras. After reviewing this evolution we make two contributions. First it is shown that the failure of a variety of algebras to be closed under canonical extensions is witnessed by a particular one of its free algebras. The size of the set of generators of this algebra can be made a function of a collection of varieties and is a kind of Hanf number for canonical closure. Secondly we study the complete lattice of stable subsets of a polarity structure, and show that if a class of polarities is closed under ultraproducts, then its stable set lattices generate a variety that is closed under canonical extensions. This generalises an earlier result of the author about generation of canonically closed varieties of Boolean algebras with operators, which was in turn an abstraction of the result that a first-order definable class of Kripke frames determines a modal logic that is valid in its so-called canonical frames

    Profinite Heyting algebras

    Get PDF
    Abstract For a Heyting algebra A, we show that the following conditions are equivalent: (i) A is profinite; (ii) A is finitely approximable, complete, and completely joinprime generated; (iii) A is isomorphic to the Heyting algebra Up(X) of upsets of an image-finite poset X. We also show that A is isomorphic to its profinite completion iff A is finitely approximable, complete, and the kernel of every finite homomorphic image of A is a principal filter of A

    Codimension and pseudometric in co-Heyting algebras

    Full text link
    In this paper we introduce a notion of dimension and codimension for every element of a distributive bounded lattice LL. These notions prove to have a good behavior when LL is a co-Heyting algebra. In this case the codimension gives rise to a pseudometric on LL which satisfies the ultrametric triangle inequality. We prove that the Hausdorff completion of LL with respect to this pseudometric is precisely the projective limit of all its finite dimensional quotients. This completion has some familiar metric properties, such as the convergence of every monotonic sequence in a compact subset. It coincides with the profinite completion of LL if and only if it is compact or equivalently if every finite dimensional quotient of LL is finite. In this case we say that LL is precompact. If LL is precompact and Hausdorff, it inherits many of the remarkable properties of its completion, specially those regarding the join/meet irreducible elements. Since every finitely presented co-Heyting algebra is precompact Hausdorff, all the results we prove on the algebraic structure of the latter apply in particular to the former. As an application, we obtain the existence for every positive integers n,dn,d of a term tn,dt_{n,d} such that in every co-Heyting algebra generated by an nn-tuple aa, tn,d(a)t_{n,d}(a) is precisely the maximal element of codimension dd.Comment: 34 page
    corecore