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Abstract For a Heyting algebra A, we show that the following conditions are equiva-
lent: (i) A is profinite; (ii) A is finitely approximable, complete, and completely join-
prime generated; (iii) A is isomorphic to the Heyting algebra Up(X) of upsets of an
image-finite poset X. We also show that A is isomorphic to its profinite completion
iff A is finitely approximable, complete, and the kernel of every finite homomorphic
image of A is a principal filter of A.
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1 Introduction

An algebra A is called profinite if A is isomorphic to the inverse limit of an inverse
family of finite algebras. It is well-known (see, e.g., [8, Sec. VI.2 and VI.3]) that a
Boolean algebra is profinite iff it is complete and atomic, and that a distributive
lattice is profinite iff it is complete and completely join-prime generated. In [2], a
dual description of the profinite completion of a Heyting algebra was given, and a
connection between profinite and canonical completions of a Heyting algebra was
investigated. On the other hand, no characterization of profinite Heyting algebras
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was known. In this note we fill in this gap by providing several equivalent conditions
for a Heyting algebra A to be profinite. In particular, we prove that the following
conditions are equivalent: (i) A is profinite; (ii) A is finitely approximable, complete,
and completely join-prime generated; (iii) A is isomorphic to the Heyting algebra
Up(X) of upsets of an image-finite poset X. We also provide a dual description of
profinite Heyting algebras, and show that a Heyting algebra A is isomorphic to its
profinite completion iff A is finitely approximable, complete, and the kernel of every
finite homomorphic image of A is a principal filter of A. These characterizations
of profinite Heyting algebras have many consequences, some known, but with new
simpler proofs, and some new. For example, the description of profinite Boolean
algebras is an easy consequence of our results. We also show that a Boolean algebra,
or more generally, a Heyting algebra which belongs to a finitely generated variety
of Heyting algebras is isomorphic to its profinite completion iff it is finite. Although
similar results for distributive lattices are not immediate consequences of our results
for Heyting algebras, they are obtained by a simple modification of our proofs.
Finally, we describe profinite linear Heyting algebras, prove that a finitely generated
Heyting algebra is profinite iff it is finitely approximable and complete, and show that
the free 1-generated Heyting algebra (also known as the Rieger-Nishimura lattice) is
up to isomorphism a unique profinite free finitely generated Heyting algebra.

2 Complete and Completely Join-Prime Generated Heyting Algebras

We recall that a Heyting algebra is a bounded distributive lattice (A, ∧,∨, 0, 1) with
a binary operation →: A2 → A such that for each a, b, c ∈ A we have

a ∧ c ≤ b iff c ≤ a → b .

We also recall that a Priestley space is a pair (X,≤) such that X is a compact space, ≤
is a partial order on X, and for each x, y ∈ X, whenever x �≤ y, there exists a clopen
upset U of X such that x ∈ U and y /∈ U . A Priestley space is an Esakia space if for
each open subset U of X we have ↓U is open in X.

The same way Priestley spaces serve as duals of bounded distributive lattices
[10], Esakia spaces serve as duals of Heyting algebras [4]. In fact, every bounded
distributive lattice or Heyting algebra A can be represented as the algebra Upτ (X)

of clopen upsets of the dual space X of A. The construction of X is well-known: X
is the set of prime filters of A ordered by inclusion; for a ∈ A, let

φ(a) = {x ∈ X : a ∈ x},
and generate a topology on X by the basis {φ(a) − φ(b) : a, b ∈ A}. Then X becomes
a Priestley space and φ becomes a bounded lattice isomorphism from A to Upτ (X);
moreover, whenever A is a Heyting algebra, we have

φ(a → b) = (↓(φ(a) − φ(b)))c.

Let DL denote the category of bounded distributive lattices and bounded lattice
homomorphisms, and let HA denote the category of Heyting algebras and Heyting
algebra homomorphisms. Let also PS denote the category of Priestley spaces and
continuous order-preserving maps. For posets X and Y, we recall that an order-
preserving map f : X → Y is a bounded morphism if for each x ∈ X and y ∈ Y
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with f (x) ≤ y, there exists z ∈ X such that x ≤ z and f (z) = y. Let ES denote the
category of Esakia spaces and continuous bounded morphisms.

Theorem 2.1

(1) (Priestley [10]) DL is dually equivalent to PS.
(2) (Esakia [4]) HA is dually equivalent to ES.

For a Priestley space X and a subset U of X, let JU denote the largest open upset
of X contained in U , and let DU denote the smallest closed upset of X containing
U . The following lemma, established in [7, Lemmas 3.1 and 3.6], will be useful
subsequently.

Lemma 2.2 Let A be a bounded distributive lattice, X be the dual Priestley space of
A, and Y ⊆ X.

(1) JY = (↓(Int(Y))c)c = ⋃{φ(a) : φ(a) ⊆ Y}.
(2) DY = ↑Y = ⋂{φ(a) : Y ⊆ φ(a)}. Moreover, if X is an Esakia space (that is, A

is a Heyting algebra) and Y is an upset of X, then DY = Y.

In order to give a dual characterization of complete distributive lattices and
complete Heyting algebras, we need the following lemma.

Lemma 2.3 Let A be a bounded distributive lattice, B be a subset of A, and X be the
dual Priestley space of A.

(1)
∨

B exists in A iff D(
⋃

b∈B φ(b)) is clopen in X.
(2) If A is a Heyting algebra, then

∨
B exists in A iff

⋃
b∈B φ(b) is clopen in X.

(3)
∧

B exists in A iff J(
⋂

b∈B φ(b)) is clopen in X.

Proof

(1) First assume that
∨

B exists in A. Then b ≤ ∨
B, and so φ(b) ⊆ φ(

∨
B) for

each b ∈ B. Therefore,
⋃

b∈B φ(b) ⊆ φ(
∨

B), and so D(
⋃

b∈B φ(b)) ⊆ φ(
∨

B)

since φ(
∨

B) is a closed upset. Now suppose that x /∈ D(
⋃

b∈B φ(b)). By
Lemma 2.2, there is a ∈ A such that x /∈ φ(a) and

⋃
b∈B φ(b) ⊆ φ(a). There-

fore, b ≤ a for each b ∈ B, and so
∨

B ≤ a. It follows that φ(
∨

B) ⊆ φ(a),
and so x /∈ φ(

∨
B). Thus, φ(

∨
B) ⊆ D(

⋃
b∈B φ(b)). Consequently, φ(

∨
B) =

D(
⋃

b∈B φ(b)), and so D(
⋃

b∈B φ(b)) is clopen in X. Now let D(
⋃

b∈B φ(b)) be
clopen in X. Then there exists a ∈ A such that D(

⋃
b∈B φ(b)) = φ(a). But then

a is the least upper bound of B, so a = ∨
B, and so

∨
B exists in A.

(2) If A is a Heyting algebra, then X is an Esakia space, and so, by Lemma 2.2,
D(U) = U for each upset U of X. Now apply (1).

(3) can be proved using an argument dual to (1). ��

As an immediate consequence of Lemma 2.3 we obtain the following dual
characterization of complete distributive lattices and complete Heyting algebras (see
[11, Sec. 8] and [7, Remark after Thm. 3.8]).
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Theorem 2.4 Let A be a bounded distributive lattice and X be its dual Priestley space.

(1) The following conditions are equivalent:

(a) A is complete.
(b) For every open upset U of X, we have D(U) is clopen in X.
(c) For every closed upset V of X, we have J(V) is clopen in X.

(2) If A is a Heyting algebra, then A is complete iff for every open upset U of X, its
closure U is clopen in X.

Proof

(1) We prove that (a) is equivalent to (b). That (a) is equivalent to (c) can be
proved similarly. First suppose that A is complete. If U is an open upset of X,
then JU = U , and so, by Lemma 2.2, U = ⋃{φ(a) : φ(a) ⊆ U}. Let B = {a ∈
A : φ(a) ⊆ U}. Since A is complete,

∨
B exists in A. Therefore, by Lemma 2.3,

D(U) is clopen. Now suppose D(U) is clopen for each open upset U of X. For
a subset B of A,

⋃
b∈B φ(b) is an open upset of X. Therefore, D(

⋃
b∈B φ(b)) is

clopen in X. This, by Lemma 2.3, implies that
∨

B exists. Thus, A is complete.
(2) follows from (1) and Lemma 2.2. ��

Definition 2.5 (Priestley [11]) We call a Priestley space X extremally order-
disconnected if D(U) is clopen for each open upset U of X.

Remark 2.6 In view of Definition 2.5, Theorem 2.4 states that a bounded distributive
lattice A is complete iff its dual space X is extremally order-disconnected. Moreover,
if A is a Heyting algebra, then X is extremally order-disconnected iff U is clopen for
each open upset U of X.

Let A be a bounded distributive lattice. We recall that an element a �= 0 of A
is join-prime if a ≤ b ∨ c implies a ≤ b or a ≤ c for all b, c ∈ A. We also recall that
0 �= a ∈ A is completely join-prime if for each B ⊆ A such that

∨
B exists in A we

have a ≤ ∨
B implies there exists b ∈ B with a ≤ b . Let J(A) denote the set of join-

prime elements of A and J∞(A) denote the set of completely join-prime elements
of A.

Theorem 2.7 Let A be a Heyting algebra and let X be its dual space.

(1) a ∈ J(A) iff there exists x ∈ X such that φ(a) = ↑x.
(2) a ∈ J∞(A) iff there exists an isolated point x ∈ X such that φ(a) = ↑x.

Proof

(1) First suppose that φ(a) = ↑x for some x ∈ X. If a ≤ b ∨ c, then ↑x = φ(a) ⊆
φ(b) ∪ φ(c), so x ∈ φ(b) or x ∈ φ(c), and so ↑x ⊆ φ(b) or ↑x ⊆ φ(c). There-
fore, a ≤ b or a ≤ c, and so a ∈ J(A). Now suppose that a is join-prime. Let
min(φ(a)) denote the set of minimal points of φ(a). By [6, p. 54, Thm. 2.1], for
every closed upset U of an Esakia space, we have U = ↑min(U). Therefore,
φ(a) = ↑min(φ(a)). We show that min(φ(a)) is a singleton. Suppose not. Fix
two distinct elements x, y ∈ min(φ(a)). Obviously, for every z ∈ min(φ(a)) with
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x �= z we have z �≤ x. Thus, there exists a clopen upset Uz such that z ∈ Uz

and x /∈ Uz. Also, x �≤ y implies there exists a clopen upset Ux such that x ∈
Ux and y /∈ Ux. Then min(φ(a)) ⊆ Ux ∪ ⋃{Uz : z ∈ min(φ(a)) and z �= x}, and
so φ(a) = ↑min(φ(a)) ⊆ Ux ∪ ⋃{Uz : z ∈ min(φ(a)) and z �= x}. Since φ(a) is
compact, there exist Uz1 , . . . , Uzn such that φ(a) ⊆ Ux ∪ U , where U = Uz1 ∪
· · · ∪ Uzn . As both Ux and U are clopen upsets of X, there exist b, c ∈ A such
that Ux = φ(b) and U = φ(c). Therefore, φ(a) ⊆ φ(b) ∪ φ(c), but φ(a) �⊆ φ(b)

(as y ∈ φ(a) but y /∈ φ(b)) and φ(a) �⊆ φ(c) (as x ∈ φ(a) but x /∈ φ(c)). Thus, a ≤
b ∨ c, but a �≤ b and a �≤ c, which contradicts to a being join-prime. Therefore,
min(φ(a)) is a singleton, and so φ(a) = ↑x for some x ∈ X.

(2) First suppose that φ(a) = ↑x for an isolated point x ∈ X. If a ≤ ∨
B, then by

Lemma 2.3, ↑x = φ(a) ⊆ ⋃
b∈B φ(b). Therefore, x ∈ ⋃

b∈B φ(b). Since x is an
isolated point, we obtain x ∈ ⋃

b∈B φ(b). Thus, x ∈ φ(b) for some b ∈ B. It
follows that φ(a) = ↑x ⊆ φ(b), so a ≤ b , and so a ∈ J∞(A). Now suppose that a
is completely join-prime. Since every completely join-prime element is also join-
prime, by (1) we get that φ(a) = ↑x for some x ∈ X. We show that x is an iso-
lated point. Because X is an Esakia space, {x} is closed, and so U = φ(a) − {x}
is an open upset. By Lemma 2.2, U = J(U) = ⋃{φ(b) : φ(b) ⊆ U}. If x is not
an isolated point, then U = φ(a). Therefore, φ(a) = ⋃{φ(b) : φ(b) ⊆ U}. By
Lemma 2.3 this means that a = ∨

B. But since x /∈ U , we have that x /∈ φ(b) for
each b ∈ B. Therefore, a �≤ b for each b ∈ B, implying that a is not completely
join-prime. The obtained contradiction proves that x is an isolated point. ��

We note that Theorem 2.7.1 is also true for bounded distributive lattices. On the
other hand, there exist bounded distributive lattices in which Theorem 2.7.2 is not
true, as follows from the following example.

Example 2.8 Let Z
− denote the set of negative integers with the discrete topology,

and let α(Z−) = Z
− ∪ {−∞} be the one-point compactification of Z

−. Let also X
be the disjoint union of α(Z−) with a one-point space {x}. Define a partial order ≤
on X as it is shown in Fig. 1a. It is easy to check that X is a Priestley space. The
distributive lattice A whose dual Priestley space is X is shown in Fig. 1b. Clearly x is
an isolated point of X and ↑x is clopen in X. Let a ∈ A be such that ↑x = φ(a). Then
a ≤ 1 = ∨

n∈N
bn, but a �≤ bn for each n ∈ N (see Fig. 1b). Therefore, a /∈ J∞(A), but

φ(a) = ↑x for an isolated point x ∈ X. Obviously, A is not a Heyting algebra!

We recall that a Heyting algebra A is well-connected if a ∨ b = 1 implies a = 1 or
b = 1, and that A is subdirectly irreducible if there exists a smallest filter properly
containing the filter {1}. Since A is well-connected iff 1 is join-prime and A is
subdirectly irreducible iff 1 is completely join-prime, the following theorem, first
established in [5, p. 152], is an immediate corollary of Theorem 2.7.

Theorem 2.9 Let A be a Heyting algebra with dual space X.

(1) A is well-connected iff X = ↑x for some x ∈ X.
(2) A is subdirectly irreducible iff X = ↑x for some isolated point x ∈ X.
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Fig. 1 a Partial order ≤ on X.
b Distributive lattice A
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We call a Heyting algebra A completely join-prime generated if every element of
A is a join of completely join-prime elements of A. Equivalently, A is completely
join-prime generated if for each a, b ∈ A with a �≤ b , there is p ∈ J∞(A) such that
p ≤ a and p �≤ b . Let X be the dual space of A. We let Xiso denote the set of isolated
points of X, and set

X0 = {x ∈ Xiso : ↑x ∈ Upτ (X)}.

Clearly X0 ⊆ Xiso, but in general, X0 is not equal to Xiso as the following example
shows.

Example 2.10 Let X = N ∪ {∞} be the one-point compactification of the set of
natural numbers with the discrete topology. Define a partial order on X as it is shown
in Fig. 2. Then it is easy to verify that X is an Esakia space, that Xiso = N, and that
X0 = ∅. Therefore, X0 �= Xiso.

Fig. 2 Partial order on X ∞

0 1 32
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As a consequence of Theorem 2.7, we obtain the following characterization of
completely join-prime generated Heyting algebras.

Theorem 2.11 Let A be a Heyting algebra and X be its dual space. Then A is
completely join-prime generated iff X0 is dense in X.

Proof First suppose that A is completely join-prime generated. We show that X0

is dense in X. Let φ(a) − φ(b) be a nonempty basic open set. Then a �≤ b . Since A
is completely join-prime generated, there is p ∈ J∞(A) such that p ≤ a and p �≤ b .
As p ∈ J∞(A), by Theorem 2.7.2, there is x ∈ X0 such that φ(p) = ↑x. Therefore,
x ∈ φ(a) and x /∈ φ(b). Thus, (φ(a) − φ(b)) ∩ X0 �= ∅, and so X0 is dense in X.

Now suppose that X0 is dense in X. We show that A is completely join-prime
generated. Let a �≤ b . Then φ(a) �⊆ φ(b), and so φ(a) − φ(b) �= ∅. Since X0 is dense
and φ(a) − φ(b) is nonempty, so is (φ(a) − φ(b)) ∩ X0. Let x ∈ (φ(a) − φ(b)) ∩ X0.
By Theorem 2.7.2, there is p ∈ J∞(A) such that φ(p) = ↑x. Therefore, φ(p) ⊆ φ(a)

and φ(p) �⊆ φ(b). Thus, there is p ∈ J∞(A) such that p ≤ a and p �≤ a, and so A is
completely join-prime generated. ��

On the other hand, it may happen that in the dual space X of a Heyting algebra A
the set Xiso of isolated points of X is dense in X, but nevertheless A is not completely
join-prime generated. Indeed, let A be the Heyting algebra of clopen upsets of the
space X described in Example 2.10. Then Xiso is dense in X, but since X0 = ∅,
Theorem 2.7.2 implies that J∞(A) = ∅. Therefore, A is not completely join-prime
generated.

As a consequence of Theorems 2.4 and 2.7, we obtain the following characteriza-
tion of complete and completely join-prime generated Heyting algebras.

Theorem 2.12 Let A be a Heyting algebra and X be its dual space. Then the following
conditions are equivalent:

(1) A is complete and completely join-prime generated.
(2) X is extremally order-disconnected and X0 is dense in X.
(3) There is a poset Y such that A is isomorphic to Up(Y).

Proof

(1) ⇒ (2) follows from Theorem 2.4, Remark 2.6, and Theorem 2.11.
(2) ⇒ (3) We show that A is isomorphic to Up(X0). Define α : A → Up(X0) by

α(a) = φ(a) ∩ X0. If a ≤ b, then φ(a) ⊆ φ(b), and so α(a) = φ(a) ∩ X0 ⊆
φ(b) ∩ X0 = α(b). If a � b, then φ(a) � φ(b). Therefore, φ(a) − φ(b) �=
∅, so (φ(a) − φ(b)) ∩ X0 �= ∅, and so α(a) = φ(a) ∩ X0 �⊆ φ(b) ∩ X0 =
α(b). Consequently, a ≤ b iff α(a) ⊆ α(b). To see that α is onto, let U
be an upset of X0. We let V = ⋃

x∈U ↑x. Then V is an open upset of X.
Since X is an extremally order-disconnected Esakia space, V is a clopen
upset of X. Moreover, as X0 ⊆ Xiso, we have V ∩ X0 = U . Therefore,
there exists a ∈ A such that α(a) = φ(a) ∩ X0 = V ∩ X0 = U , and so α is
onto. Thus, α : A → Up(X0) is an isomorphism.

(3) ⇒ (1) Suppose there is a poset Y such that A is isomorphic to Up(Y). It is easy
to see that Up(Y) is complete and that J∞(Up(Y)) = {↑y : y ∈ Y}. Since
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U = ⋃
u∈U ↑u for each U ∈ Up(Y), it follows that Up(Y) is completely

join-prime generated. Thus, A is complete and completely join-prime
generated. ��

The equivalence of conditions (1) and (3) of Theorem 2.12 is well-known. It can,
in fact, be extended to the dual equivalence of the category HA+ of complete and
completely join-prime generated Heyting algebras and complete Heyting algebra
homomorphisms and the category Posb of posets and bounded morphisms. The con-
travariant functors (−)+ : HA+ → Posb and (−)+ : Posb → HA+ are constructed
as follows (see, e.g, [1, Sec. 7]): If A ∈ HA+, then A+ = (J∞(A),≥), and if h ∈
hom(A, B), then h+ : J∞(B) → J∞(A) is given by h+(b) = ∧{a ∈ A : b ≤ h(a)}
for each b ∈ B. If X ∈ Posb, then X+ = Up(X), and if f ∈ hom(X, Y), then f + :
Up(Y) → Up(X) is given by f + = f −1. In the next section we define the full subcat-
egory of HA+ which will turn out to be dually equivalent to the full subcategory of
Posb of image-finite posets.

3 Profinite Heyting Algebras

We recall that an algebra A is finitely approximable if A is isomorphic to a subalgebra
of a product of finite algebras [9, p. 60]. It follows that A is finitely approximable
iff A is a subdirect product of its finite homomorphic images. We give a dual
characterization of finitely approximable Heyting algebras. Let A be a Heyting
algebra and let X be the dual space of A. Set

Xfin = {x ∈ X : ↑x is finite}.
A version of the next theorem was first established in [5, p. 152]. Our main tool
in proving it is the correspondence between homomorphic images of A and closed
upsets of X [4, Thm. 4]. In particular, we have that finite homomorphic images of A
correspond to finite upsets of X, or equivalently, of Xfin.

Theorem 3.1 Let A be a Heyting algebra and let X be the dual space of A. Then A is
finitely approximable iff Xfin is dense in X.

Proof First suppose that A is finitely approximable. Let {Ai : i ∈ I} be the family of
finite homomorphic images of A. Since A is finitely approximable, A is a subdirect
product of {Ai : i ∈ I}. Let e : A → ∏

i∈I Ai be the embedding. We denote by π j the
j-th projection

∏
i∈I Ai → A j. Let Xi be the dual space of Ai. Then, since Ai is a

finite homomorphic image of A, by duality it follows that Xi is a finite upset of
X. Therefore,

⋃
i∈I Xi ⊆ Xfin. We show that

⋃
i∈I Xi is dense in X. Because {φ(a) −

φ(b) : a, b ∈ A} forms a basis for the topology on X, it is sufficient to show that for
each a, b ∈ A with φ(a) − φ(b) �= ∅, there exists i ∈ I such that (φ(a) − φ(b)) ∩ Xi �=
∅. From φ(a) − φ(b) �= ∅ it follows that a �≤ b . Therefore, there exists i ∈ I such
that πi(e(a)) �≤ πi(e(b)). Thus, φ(a) ∩ Xi �⊆ φ(b) ∩ Xi, and so there exists i ∈ I such
that (φ(a) − φ(b)) ∩ Xi �= ∅. It follows that

⋃
i∈I Xi intersects every nonempty basis

element of X, so
⋃

i∈I Xi is dense in X. Consequently, Xfin is also dense in X.
Now suppose that Xfin is dense in X. Let {Xi : i ∈ I} be the family of finite

upsets of X. Then Xfin = ⋃
i∈I Xi. Let Ai be the Heyting algebra Up(Xi) of upsets
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of Xi. Define e : A → ∏
i∈I Ai by e(a) = (φ(a) ∩ Xi)i∈I . That e is a Heyting algebra

homomorphism is easy to verify. We show that e is 1-1. If a �≤ b , then φ(a) − φ(b) �=
∅. Since

⋃
i∈I Xi is dense in X, (φ(a) − φ(b)) ∩ ⋃

i∈I Xi �= ∅. Therefore, there exists
i ∈ I such that (φ(a) − φ(b)) ∩ Xi �= ∅. Thus, πi(e(a)) �≤ πi(e(b)), so e(a) �≤ e(b), and
so e is 1-1. It follows that A is finitely approximable. ��

Let A be an algebra, and let I be the set of congruences θ on A such that A/θ

is finite. We denote the image of a ∈ A in A/θ by [a]θ . If ψ ⊆ θ , then there is a
canonical projection ϕψθ : A/ψ → A/θ given by ϕψθ ([a]ψ) = [a]θ . Then (I,⊇) is a
directed set, and (I, {A/θ}, {ϕψθ }) is an inverse system of algebras. Let Â be the
inverse limit of this inverse system. It is well-known that

Â = {(aθ )θ∈I ∈
∏

θ∈I

A/θ : ϕψθ (aψ) = aθ whenever ψ ⊆ θ}.

Following [2, Def. 2.4], we call Â the profinite completion of A. We define the
canonical homomorphism e : A → Â by e(a) = ([a]θ )θ∈I .

Proposition 3.2 The canonical map e : A → Â is 1-1 iff A is finitely approximable.

Proof If e is 1-1, then it follows from the definition of Â that A is isomorphic
to a subalgebra of a product of finite algebras, thus A is finitely approximable.
Conversely, if A is finitely approximable, then A is a subdirect product of the
collection {A/θ : θ ∈ I} of finite homomorphic images of A. Therefore, a �= b in A
implies that there exists θ ∈ I such that [a]θ �= [b ]θ . Thus, the images of a and b in
the inverse limit of (I, {A/θ}, {ϕψθ }) are different, and so e is 1-1. ��

Remark 3.3 Since not every Heyting algebra is finitely approximable, for Heyting
algebras the canonical map e : A → Â need not be 1-1. For a simple example, see [2,
p. 153].

Definition 3.4 We call an algebra A profinite if it is isomorphic to the inverse limit
of an inverse system of finite algebras.

Obvious examples of profinite algebras are profinite completions of algebras.
Let A be a Heyting algebra and let X be its dual space. A characterization of the
profinite completion Â of A was given in [2, Thm. 4.7], where it was shown that Â is
isomorphic to the Heyting algebra of upsets of Xfin. Now we give both the algebraic
and dual characterizations of profinite Heyting algebras.

Definition 3.5 We say that a poset X is image-finite if ↑x is finite for each x ∈ X.

We recall from [2, Prop. 3.4] that if X is a poset, then the dual space of the
Heyting algebra Up(X) of upsets of X is order-homeomorphic to the Nachbin order-
compactification n(X) of X. Thus, for each order-preserving map f from X to an
Esakia space Y, there exists a unique extension nf of f to n(X). Moreover, if f is
a bounded morphism, then so is nf (see [2, Lem. 4.3]). Furthermore, if X is image-
finite, then the canonical order-embedding j : X → n(X) is a bounded morphism
(see [2, Lem. 4.5]).
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Theorem 3.6 Let A be a Heyting algebra and let X be its dual space. Then the
following conditions are equivalent:

(1) A is profinite.
(2) A is finitely approximable, complete, and completely join-prime generated.
(3) A is finitely approximable, complete, and 1 = ∨

J∞(A).
(4) X is extremally order-disconnected and Xiso is a dense upset of X contained

in Xfin.
(5) X is extremally order-disconnected and X0 is a dense upset of X contained

in Xfin.
(6) There is an image-finite poset Y such that A is isomorphic to Up(Y).

Proof

(1) ⇒ (2) Clearly if A is profinite, then A is finitely approximable. That A is also
complete and completely join-prime generated follows from [2, Lemmas
2.5 and 2.7].

(2) ⇒ (3) is trivial.
(3) ⇒ (4) Since A is a complete Heyting algebra, by Theorem 2.4 and Remark 2.6,

X is extremally order-disconnected. Because A is finitely approximable,
by Theorem 3.1, Xfin is dense in X. Thus, Xiso ⊆ Xfin. Let x ∈ Xiso.
Since 1 = ∨

J∞(A), by Lemma 2.3, x ∈ ⋃{φ(a) : a ∈ J∞(A)}. Because x
is an isolated point, we have x ∈ ⋃{φ(a) : a ∈ J∞(A)}. Therefore, there
is a ∈ J∞(A) such that x ∈ φ(a). By Theorem 2.7, there is y ∈ X0 ⊆ Xiso

such that φ(a) = ↑y. This means that ↑y is clopen and x ∈ ↑y. Because
Xiso ⊆ Xfin, we have that ↑y is finite. Thus, ↑y is a finite clopen upset, and
so every element of ↑y is an isolated point. This implies that ↑x ⊆ Xiso.
Consequently, Xiso is an upset. We show that Xiso is dense in X. By
Lemma 2.3,

X = φ(1) = φ
(∨

J∞(A)
)

=
⋃

a∈J∞(A)

φ(a) =
⋃

x∈X0

↑x ⊆
⋃

x∈Xiso

↑x = Xiso.

Thus, Xiso = X, and so Xiso is a dense upset of X contained in Xfin.
(4) ⇒ (5) It follows from the definition of X0 that X0 ⊆ Xiso. On the other hand,

since Xiso is an upset, if x ∈ Xiso, then ↑x ⊆ Xiso. Moreover, as Xiso ⊆
Xfin, ↑x is finite. Therefore, ↑x is a finite subset of Xiso, hence ↑x is
clopen. Thus, x ∈ X0. Consequently, X0 = Xiso, whence the implication
follows.

(5) ⇒ (6) Since X0 ⊆ Xfin, X0 is image-finite. We show that A is isomorphic to
Up(X0). Define α : A → Up(X0) by α(a) = φ(a) ∩ X0. The proof of the
implication (2) ⇒ (3) of Theorem 2.12 shows that a ≤ b iff α(a) ⊆ α(b).
To see that α is onto is simpler than in the proof of Theorem 2.12. Let U
be an upset of X0. Since X0 is an open upset of X, so is U . Therefore,
U is a clopen upset of X as X is an extremally order-disconnected
Esakia space. Moreover, U ∩ X0 = U . Thus, there exists a ∈ A such
that α(a) = φ(a) ∩ X0 = U ∩ X0 = U , and so α is onto. Consequently,
α : A → Up(X0) is an isomorphism.

(6) ⇒ (1) Suppose that A is isomorphic to Up(Y) for some image finite-poset
Y. We show that Up(Y) is profinite. Let {Yi : i ∈ I} be the family of
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finite upsets of Y. We can order I by i ≤ j if Yi ⊆ Y j. Let eij : Yi → Y j

denote the identity map. Then (I, {Yi}, {eij}) forms a directed system of
finite posets and Y = ⋃

i∈I Yi together with the inclusions ei : Yi → Y is
the direct limit of (I, {Yi}, {eij}). For each i ∈ I, let Up(Yi) denote the
Heyting algebra of upsets of Yi. Clearly αi : Up(Y) → Up(Yi), given by
αi(U) = U ∩ Yi, and αij : Up(Y j) → Up(Yi), given by αij(U) = U ∩ Yi,
are Heyting algebra homomorphisms (which are dual to the embeddings
ei : Yi → Y and eij : Yi → Y j, respectively). Moreover, since the diagram

Y

Yi
eij

��

ei
����������

Y j

e j
���������

commutes, so does the diagram

Up(Y)

αi

����������� α j

�����������

Up(Yi) Up(Y j)
αij

��

We show that (Up(Y), {αi}) is the inverse limit of the inverse system
(I, {Up(Yi)}, {αij}) of finite homomorphic images of Up(Y) by showing
that (Up(Y), {αi}) satisfies the universal mapping property of an inverse
limit. Let B be a Heyting algebra together with Heyting algebra homo-
morphisms γi : B → Up(Yi), such that i ≤ j implies αij ◦ γ j = γi. Let Z be
the dual space of B, and let fi : Yi → Z be the dual of γi : B → Up(Yi).
Since Y is the direct limit of the Yi, there is f : Y → Z such that f ◦ ei =
fi for each i ∈ I.

Y
f

�� Z

Yi

fi

���������ei

���������

Because each fi is a bounded morphism, so is f . Therefore, by iden-
tifying B with Upτ (Z ), we obtain a Heyting algebra homomorphism
γ : B → Up(Y) (the restriction of f −1 to Upτ (Z )) such that αi ◦ γ = γi

for each i ∈ I. Suppose we had a second Heyting algebra homomor-
phism γ ′ : B → Up(Y) with αi ◦ γ ′ = γi for each i ∈ I. Since Up(Y) is
isomorphic to the Heyting algebra Upτ (n(Y)) of clopen upsets of the
Nachbin order-compactification n(Y) of Y, we would have two Heyting
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algebra homomorphisms γ, γ ′ : B → Upτ (n(Y)), and so two continuous
bounded morphisms from n(Y) to Z extending f .

n(Y)

		��
��

��
��

		��
��

��
��

Y
f

��

j


��������

Z

However, by the mapping property for n(Y), there is a unique extension
of f . Therefore, γ = γ ′. Thus, by the universal mapping property for
inverse limits, we have that Up(Y) is isomorphic to the inverse limit of
(I, {Up(Yi)}, {αij}). Consequently, Up(Y) is profinite, implying that A is
profinite. ��

Remark 3.7 Since every Heyting algebra (A,≤) isomorphic to the Heyting algebra
of upsets of a poset is a bi-Heyting algebra (that is, its order dual (A,≥) is also a
Heyting algebra), we deduce from Theorem 3.6 that every profinite Heyting algebra
is a bi-Heyting algebra.

Example 3.8 As follows from Theorem 3.6, a Heyting algebra A is profinite iff A
is finitely approximable, complete, and 1 = ∨

J∞(A). We sketch a few examples
showing that none of these three conditions can be eliminated.

(1) Free n-generated Heyting algebras, for n > 1, provide examples of Heyting
algebras which are finitely approximable, satisfy 1 = ∨

J∞(A), but are not
complete (see Section 4 for details).

(2) To obtain an example of a complete Heyting algebra A such that 1 = ∨
J∞(A),

but A is not finitely approximable, let B be an infinite complete and atomic
Boolean algebra with dual Stone space X. Let Y be the disjoint union of
X with a one-point space {y}. Set y ≤ x for each x ∈ X. Clearly Y is an
Esakia space. Let A be the Heyting algebra of clopen upsets of Y. Since X
is extremally disconnected, Y is extremally order-disconnected, and so A is
complete. Moreover, Y = ↑y and y is an isolated point. Therefore, 1 ∈ J∞(A),
and so 1 = ∨

J∞(A). Thus, A is complete and 1 = ∨
J∞(A). However, A is not

finitely approximable because Yfin = X, so Yfin = X, and so Yfin is not dense
in Y.

(3) Finally, let A be the Heyting algebra of clopen upsets of the Esakia space
X described in Example 2.10. It is easy to see that X is extremally order-
disconnected. Therefore, A is a complete Heyting algebra. (In fact, A is
isomorphic to the Heyting algebra of cofinite subsets of N together with ∅.)
We already observed that J∞(A) = ∅. Therefore, 1 �= ∨

J∞(A). Moreover,
since Xfin = X, A is finitely approximable. Thus, A is a finitely approximable
complete Heyting algebra such that 1 �= ∨

J∞(A).

Remark 3.9 As we pointed out at the end of Section 2, the category HA+ of com-
plete and completely join-prime generated Heyting algebras and complete Heyting
algebra homomorphisms is dually equivalent to the category Posb of posets and
bounded morphisms. Let ProHA denote the category of profinite Heyting algebras
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and complete Heyting algebra homomorphisms. Clearly ProHA is a full subcategory
of HA+. Let also ImfPosb denote the category of image-finite posets and bounded
morphisms. Clearly ImfPosb is a full subcategory of Posb. As a consequence of
Theorem 3.6, we obtain that ProHA is dually equivalent to ImfPosb.

As another corollary of Theorem 3.6, we give necessary and sufficient conditions
for a Heyting algebra A to be isomorphic to its profinite completion Â.

Theorem 3.10 Let A be a Heyting algebra and let X be its dual space. Then the
following conditions are equivalent:

(1) A is isomorphic to its profinite completion.
(2) A is finitely approximable, complete, and the kernel of every finite homomorphic

image of A is a principal filter of A.
(3) X is extremally order-disconnected, X0 = Xiso = Xfin, and they are dense in X.

Proof

(1) ⇒ (2) Suppose that A is isomorphic to its profinite completion Â. Then A
is profinite. So, by Theorem 3.6, A is finitely approximable and com-
plete. Moreover, every finite homomorphic image A j of A is a finite
homomorphic image of Â. Therefore, the kernel of this homomorphism
is a closed (even clopen) filter in the topology Â inherited from the
product topology on

∏
i∈I Ai. Thus, by [2, Lem. 2.6], the kernel of this

homomorphism is a principal filter of A.
(2) ⇒ (3) Since A is finitely approximable and complete, by Theorem 2.4, Remark

2.6, and Theorem 3.1, X is extremally order-disconnected and Xfin is
a dense upset of X. Thus, X0 ⊆ Xiso ⊆ Xfin. To show the converse
inclusions, let x ∈ Xfin. Then ↑x is a finite upset of X, so the Heyting
algebra of upsets of ↑x is a finite homomorphic image of A. By our
assumption, the kernel of this homomorphism is a principal filter. But
dually ↑x corresponds to this filter. Thus, ↑x is clopen. It follows that x is
an isolated point because every point of a finite clopen subset of X is an
isolated point of X. Consequently, X0 = Xiso = Xfin.

(3) ⇒ (1) By Theorem 3.6, A is isomorphic to Up(X0) = Up(Xiso), and by [2, Thm.
4.7], Â is isomorphic to Up(Xfin). Now since X0 = Xiso = Xfin, we obtain
that A is isomorphic to Â. ��

Remark 3.11 It follows from Theorems 3.6 and 3.10 that if A is finitely approximable,
complete, and the kernel of every finite homomorphic image of A is a principal filter
of A, then A is automatically completely join-prime generated.

4 Consequences

In this final section we give several consequences of our two main theorems. First
we describe all profinite linear Heyting algebras. We recall that a Heyting algebra A
is linear if for each a, b ∈ A we have a ≤ b or b ≤ a. For each n ≥ 1 let Ln denote



224 Order (2008) 25:211–227

the n-element linear Heyting algebra. Clearly all Ln are profinite. Let L∞ denote the
linear Heyting algebra and X∞ denote its dual space shown in Fig. 3.

Lemma 4.1 Up to isomorphism, L∞ is the only infinite profinite linear Heyting
algebra.

Proof Let A be an infinite profinite linear Heyting algebra and let X be its dual
space. Since A is linearly ordered, so is X. By [6, p. 54], the set maxX of maximal
points of X is nonempty. As X is linearly ordered, maxX consists of a single point,
say x0. If x0 /∈ Xiso, then Xiso is not an upset of X, which contradicts to Theorem
3.6. Therefore, x0 ∈ Xiso. Let X1 = X − {x0}. Then X1 is a clopen subset of X, and
because of the same reason as above, maxX1 consists of a single point, say x1. Since
X1 is clopen and Xiso is dense in X, we have that Xiso ∩ X1 is nonempty, and the
same argument as above guarantees that x1 ∈ Xiso. Continuing this process infinitely,
we obtain a decreasing sequence x0 > x1 > · · · > xn > . . . of isolated points of X.
Let x∞ be a limit point of {x0, . . . , xn, . . . }. We show that X = {x0, . . . , xn, . . . , x∞}
and that Xiso = {x0, . . . , xn, . . . }. Let X contain another point y. Since y �= xn, we
have y < xn for each n. If y > x∞, then there exists a clopen upset U such that
y ∈ U and x∞ /∈ U . But then {x0, . . . , xn, . . . } ⊆ U and x∞ /∈ U , contradicting to
x∞ ∈ {x0, . . . , xn, . . . }. Therefore, x∞ > y. Since Xiso is an upset of X, it follows
that y /∈ Xiso. This implies that Xiso = {x0, . . . , xn, . . . }. Moreover, from x∞ > y it
follows that there exists a clopen upset V such that x∞ ∈ V and y /∈ V. Therefore,
{x0, . . . , xn, . . . } ⊆ V and y /∈ V. Thus, X − V is a nonempty clopen set having the
empty intersection with Xiso, which contradicts to density of Xiso. Consequently, such
a y does not exist, and so X = {x0, . . . , xn, . . . , x∞}. Therefore, X is order-isomorphic
and homeomorphic to X∞, and so A is isomorphic to L∞. ��

As an immediate consequence of Lemma 4.1, we obtain the following description
of profinite linear Heyting algebras.

Theorem 4.2 The linear Heyting algebras L∞ and Ln, n ≥ 1, are up to isomorphism
the only profinite linear Heyting algebras.

Fig. 3 L∞ and X∞

X∞L∞
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Now we turn our attention to Boolean algebras. It is known (see, e.g., [8, Sec. VI.2
and VI.3]) that a Boolean algebra is profinite iff it is complete and atomic. This we
obtain as an immediate corollary of Theorem 3.6.

Theorem 4.3 Let A be a Boolean algebra and let X be its dual Stone space. Then the
following conditions are equivalent:

(1) A is profinite.
(2) A is complete and atomic.
(3) X is extremally disconnected and Xiso is a dense subset of X.
(4) A is isomorphic to the powerset of some set Y.

Proof Let A be a Boolean algebra with dual Stone space X. It is enough to notice
that every Boolean algebra is finitely approximable; that a ∈ A is an atom of A iff a is
completely join-prime; that upsets of X are simply subsets of X, so every subset of X
is image-finite and Xfin = X; and that A is complete iff X is extremally disconnected.
Now apply Theorem 3.6. ��

Since bounded distributive lattice homomorphisms are not necessarily Heyting
algebra homomorphisms, an analogue of Theorem 3.6 for bounded distributive lat-
tices requires some adjustments. Firstly, like in the Boolean case, we have that every
bounded distributive lattice is finitely approximable. Secondly, since homomorphic
images of bounded distributive lattices dually correspond to closed subsets (and do
not correspond to closed upsets), Xfin plays no role in the case of bounded distributive
lattices. Consequently, we obtain the following analogue of Theorem 3.6.

Theorem 4.4 Let A be a bounded distributive lattice and let X be its dual Priestley
space. Then the following conditions are equivalent:

(1) A is profinite.
(2) A is complete and completely join-prime generated.
(3) There is a poset Y such that A is isomorphic to Up(Y).

Proof The proof of the implication (1) ⇒ (2) is the same as in Theorem 3.6. The
equivalence (2) ⇔ (3) is well-known (see, e.g., [8, Sec. VI.2 and VI.3]). For the
implication (3) ⇒ (1), observe that finite homomorphic images of A correspond to
finite subsets of X and that X is their direct limit. Now use the same idea as in proving
the implication (6) ⇒ (1) of Theorem 3.6. ��

Now we turn our attention to finitely generated Heyting algebras.

Theorem 4.5 A finitely generated Heyting algebra is profinite iff it is finitely approx-
imable and complete.

Proof Let A be a finitely generated Heyting algebra and let X be its dual space. If
A is profinite, then it follows from Theorem 3.6 that A is finitely approximable and
complete. Conversely, suppose that A is finitely approximable and complete. Since
A is finitely generated, it is well-known that Xfin ⊆ X0 (see, e.g., [3, Sec. 3.2]). As A
is finitely approximable, by Theorem 3.1, Xfin is dense in X. Consequently, Xfin ⊆
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X0 ⊆ Xiso ⊆ Xfin, and so X0 = Xiso = Xfin. Therefore, X0 is dense in X, which by
Theorem 2.11 implies that A is completely join-prime generated. Thus, A is finitely
approximable, complete, and completely join-prime generated, hence profinite by
Theorem 3.6. ��

Especially important finitely generated Heyting algebras are the free finitely
generated Heyting algebras. Since every free finitely generated Heyting algebra is
in addition finitely approximable (see, e.g., [3, Sec. 3.2]), from Theorem 4.5 we
obtain that a free finitely generated Heyting algebra is profinite iff it is complete.
But the Rieger-Nishimura lattice N – the free 1-generated Heyting algebra – is the
only complete finitely generated free Heyting algebra (see, e.g., [3, Sec. 3.2]). Thus,
N is the only profinite Heyting algebra among the free finitely generated Heyting
algebras. Since in the dual space of N we have in addition that X0 = Xiso = Xfin,
from Theorem 3.10 we obtain that N is in fact isomorphic to its profinite completion
(see [2, Ex. 4.11]).

We conclude the paper by mentioning several applications of Theorem 3.10. We
recall that a variety V of Heyting algebras is finitely generated if it is generated by a
single finite algebra.

Theorem 4.6 Let A be a Heyting algebra in a finitely generated variety. Then A is
isomorphic to its profinite completion iff A is finite.

Proof Let A be a Heyting algebra in a finitely generated variety, and let X be the
dual space of A. Clearly if A is finite, then A � Â. Conversely, suppose that A � Â.
Since A belongs to a finitely generated variety, it follows from [2, Sec. 5] that Xfin =
X. This by Theorem 3.10 implies that Xiso = X. Therefore, the topology on X is
discrete, and as X is compact, X is finite. Thus, A is finite. ��

As a corollary we obtain that a Boolean algebra is isomorphic to its profinite
completion iff it is finite. The same result holds also for bounded distributive lattices,
but the proof is slightly different.

Remark 4.7 Our main results can also be proved for modal algebras, and more
generally, for Boolean algebras with operators.
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