7,229 research outputs found

    Survey of Eye-Free Text Entry Techniques of Touch Screen Mobile Devices Designed for Visually Impaired Users

    Get PDF
    Now a days touch screen mobiles are becoming more popular amongst sighted as well visually impaired people due to its simple interface and efficient interaction techniques. Most of the touch screen devices designed for visually impaired users based on screen readers, haptic and different user interface (UI).In this paper we present a critical review of different keypad layouts designed for visually impaired users and their effect on text entry speed. And try to list out key issues to extend accessibility and text entry rate of touch screen devices.Keywords: Text entry rate, touch screen mobile devices, visually impaired users

    Human-powered smartphone assistance for blind people

    Get PDF
    Mobile devices are fundamental tools for inclusion and independence. Yet, there are still many open research issues in smartphone accessibility for blind people (Grussenmeyer and Folmer 2017). Currently, learning how to use a smartphone is non-trivial, especially when we consider that the need to learn new apps and accommodate to updates never ceases. When first transitioning from a basic feature-phone, people have to adapt to new paradigms of interaction. Where feature phones had a finite set of applications and functions, users can extend the possible functions and uses of a smartphone by installing new 3rd party applications. Moreover, the interconnectivity of these applications means that users can explore a seemingly endless set of workflows across applications. To that end, the fragmented nature of development on these devices results in users needing to create different mental models for each application. These characteristics make smartphone adoption a demanding task, as we found from our eight-week longitudinal study on smartphone adoption by blind people. We conducted multiple studies to characterize the smartphone challenges that blind people face, and found people often require synchronous, co-located assistance from family, peers, friends, and even strangers to overcome the different barriers they face. However, help is not always available, especially when we consider the disparity in each barrier, individual support network and current location. In this dissertation we investigated if and how in-context human-powered solutions can be leveraged to improve current smartphone accessibility and ease of use. Building on a comprehensive knowledge of the smartphone challenges faced and coping mechanisms employed by blind people, we explored how human-powered assistive technologies can facilitate use. The thesis of this dissertation is: Human-powered smartphone assistance by non-experts is effective and impacts perceptions of self-efficacy

    Concurrent speech feedback for blind people on touchscreens

    Get PDF
    Tese de Mestrado, Engenharia InformĂĄtica, 2023, Universidade de Lisboa, Faculdade de CiĂȘnciasSmartphone interactions are demanding. Most smartphones come with limited physical buttons, so users can not rely on touch to guide them. Smartphones come with built-in accessibility mechanisms, for example, screen readers, that make the interaction accessible for blind users. However, some tasks are still inefficient or cumbersome. Namely, when scanning through a document, users are limited by the single sequential audio channel provided by screen readers. Or when tasks are interrupted in the presence of other actions. In this work, we explored alternatives to optimize smartphone interaction by blind people by leveraging simultaneous audio feedback with different configurations, such as different voices and spatialization. We researched 5 scenarios: Task interruption, where we use concurrent speech to reproduce a notification without interrupting the current task; Faster information consumption, where we leverage concurrent speech to announce up to 4 different contents simultaneously; Text properties, where the textual formatting is announced; The map scenario, where spatialization provides feedback on how close or distant a user is from a particular location; And smartphone interactions scenario, where there is a corresponding sound for each gesture, and instead of reading the screen elements (e.g., button), a corresponding sound is played. We conducted a study with 10 blind participants whose smartphone usage experience ranges from novice to expert. During the study, we asked participants’ perceptions and preferences for each scenario, what could be improved, and in what situations these extra capabilities are valuable to them. Our results suggest that these extra capabilities we presented are helpful for users, especially if these can be turned on and off according to the user’s needs and situation. Moreover, we find that using concurrent speech works best when announcing short messages to the user while listening to longer content and not so much to have lengthy content announced simultaneously

    Touch Screens for the Older User

    Get PDF
    It has been 20 years since Ben Schneiderman predicted that there would be an increase in the use of touch screen applications yet it has been only in recent years that this prediction has come to pass. The concept of a touch screen computer was first introduced in 1965 by E.A. Johnson who described the possibilities of touch screen technology to support air traffic controllers. In this article Johnson describes how the touch display coupled to a computer can be considered as a keyboard, a novel approach at the time. Touch screens were brought into the public domain in 1971 by Elographics, Inc. which instigated the development of public touch screen technology such as automated teller machines (ATMs) and information kiosks (Brown et al., 2011). Another milestone in the history of touch technology was the introduction of the personal touch screen computer, HP-150, developed by Hewlett-Packard in 1983 (Sukumar, 1984). The purpose of this early design was to offer individuals an intuitive technology option. Although touch screen systems have maintained this intuitiveness and ease of use over the years, problems that existed with early systems still provide challenges for designers and developers to this day. Document type: Part of book or chapter of boo
    • 

    corecore