3,955,011 research outputs found

    Łukasiewicz-Moisil Many-Valued Logic Algebra of Highly-Complex Systems

    Get PDF
    A novel approach to self-organizing, highly-complex systems (HCS), such as living organisms and artificial intelligent systems (AIs), is presented which is relevant to Cognition, Medical Bioinformatics and Computational Neuroscience. Quantum Automata (QAs) were defined in our previous work as generalized, probabilistic automata with quantum state spaces (Baianu, 1971). Their next-state functions operate through transitions between quantum states defined by the quantum equations of motion in the Schroedinger representation, with both initial and boundary conditions in space-time. Such quantum automata operate with a quantum logic, or Q-logic, significantly different from either Boolean or Łukasiewicz many-valued logic. A new theorem is proposed which states that the category of quantum automata and automata--homomorphisms has both limits and colimits. Therefore, both categories of quantum automata and classical automata (sequential machines) are bicomplete. A second new theorem establishes that the standard automata category is a subcategory of the quantum automata category. The quantum automata category has a faithful representation in the category of Generalized (M,R)--Systems which are open, dynamic biosystem networks with defined biological relations that represent physiological functions of primordial organisms, single cells and higher organisms

    Internal Consistency and Reliability of the Networked Minds\ud Measure of Social Presence

    Get PDF
    This study sought to develop and test a measure\ud of social presence. Based on review of current\ud definitions and measures, a synthesis of the\ud theoretical construct that meets the criteria and\ud dimensions [1] is proposed for a broad successful\ud measure of social presence. An experiment was\ud conducted to test the internal consistency and\ud criterion validity of the measures as determined by\ud theory, specifically the ability of the measure to\ud distinguish levels of social presence that almost all\ud theories suggest exist between (1) face-to-face\ud interaction and mediated interaction, and (2)\ud different levels of mediated interaction

    Guide to the Networked Minds Social Presence Inventory v. 1.2

    Get PDF
    This document introduces the Networked\ud Minds Social Presence Inventory. The\ud inventory is a self-report measure of social\ud presence, which is commonly defined as the\ud sense of being together with another in a\ud mediated environment. The guidelines\ud provide background on the use of the social\ud presence scales in studies of users’ social\ud communication and interaction with other\ud humans or with artificially intelligent agents\ud in virtual environments

    Networked Minds Social Presence Inventory:\ud |(Scales only, Version 1.2)\ud Measures of co-presence, social presence,\ud subjective symmetry, and intersubjective symmetry

    Get PDF
    This document includes all the items that comprise the Networked Minds Social Presence Inventory. For more information on the scale, please consult the Guide to the Networked Minds Inventory on this repository

    Representational information: a new general notion and measure\ud of information

    Get PDF
    In what follows, we introduce the notion of representational information (information conveyed by sets of dimensionally defined objects about their superset of origin) as well as an\ud original deterministic mathematical framework for its analysis and measurement. The framework, based in part on categorical invariance theory [Vigo, 2009], unifies three key constructsof universal science – invariance, complexity, and information. From this unification we define the amount of information that a well-defined set of objects R carries about its finite superset of origin S, as the rate of change in the structural complexity of S (as determined by its degree of categorical invariance), whenever the objects in R are removed from the set S. The measure captures deterministically the significant role that context and category structure play in determining the relative quantity and quality of subjective information conveyed by particular objects in multi-object stimuli

    Categorical invariance and structural complexity in human concept learning

    Get PDF
    An alternative account of human concept learning based on an invariance measure of the categorical\ud stimulus is proposed. The categorical invariance model (CIM) characterizes the degree of structural\ud complexity of a Boolean category as a function of its inherent degree of invariance and its cardinality or\ud size. To do this we introduce a mathematical framework based on the notion of a Boolean differential\ud operator on Boolean categories that generates the degrees of invariance (i.e., logical manifold) of the\ud category in respect to its dimensions. Using this framework, we propose that the structural complexity\ud of a Boolean category is indirectly proportional to its degree of categorical invariance and directly\ud proportional to its cardinality or size. Consequently, complexity and invariance notions are formally\ud unified to account for concept learning difficulty. Beyond developing the above unifying mathematical\ud framework, the CIM is significant in that: (1) it precisely predicts the key learning difficulty ordering of\ud the SHJ [Shepard, R. N., Hovland, C. L.,&Jenkins, H. M. (1961). Learning and memorization of classifications.\ud Psychological Monographs: General and Applied, 75(13), 1-42] Boolean category types consisting of three\ud binary dimensions and four positive examples; (2) it is, in general, a good quantitative predictor of the\ud degree of learning difficulty of a large class of categories (in particular, the 41 category types studied\ud by Feldman [Feldman, J. (2000). Minimization of Boolean complexity in human concept learning. Nature,\ud 407, 630-633]); (3) it is, in general, a good quantitative predictor of parity effects for this large class of\ud categories; (4) it does all of the above without free parameters; and (5) it is cognitively plausible (e.g.,\ud cognitively tractable)

    Perspectives on the Neuroscience of Cognition and Consciousness

    Get PDF
    The origin and current use of the concepts of computation, representation and information in Neuroscience are examined and conceptual flaws are identified which vitiate their usefulness for addressing problems of the neural basis of Cognition and Consciousness. In contrast, a convergence of views is presented to support the characterization of the Nervous System as a complex dynamical system operating in the metastable regime, and capable of evolving to configurations and transitions in phase space with potential relevance for Cognition and Consciousness

    Organismic Supercategories and Qualitative Dynamics of Systems

    Get PDF
    The representation of biological systems by means of organismic supercategories, developed in previous papers, is further discussed. The different approaches to relational biology, developed by Rashevsky, Rosen and by Baianu and Marinescu, are compared with Qualitative Dynamics of Systems which was initiated by Henri Poincaré (1881). On the basis of this comparison some concrete results concerning dynamics of genetic system, development, fertilization, regeneration, analogies, and oncogenesis are derived

    A Dialogue on Concepts

    Get PDF
    This short dialogue, in Socratic prose, explores some of the most fundamental constructs in cognition: Concepts, thinking and analogy. In short, concepts are the atoms of thought and analogy is the 'ether' of concept formation. Therefore, thinking is the process of triggering memories through analogy

    Benign Hegemony? Russia's Grand Delusion

    Full text link
    corecore