4,099 research outputs found

    A Fixed-Point Algorithm for Closed Queueing Networks

    Get PDF
    In this paper we propose a new efficient iterative scheme for solving closed queueing networks with phase-type service time distributions. The method is especially efficient and accurate in case of large numbers of nodes and large customer populations. We present the method, put it in perspective, and validate it through a large number of test scenarios. In most cases, the method provides accuracies within 5% relative error (in comparison to discrete-event simulation)

    The MVA Priority Approximation

    Get PDF
    A Mean Value Analysis (MVA) approximation is presented for computing the average performance measures of closed-, open-, and mixed-type multiclass queuing networks containing Preemptive Resume (PR) and nonpreemptive Head-Of-Line (HOL) priority service centers. The approximation has essentially the same storage and computational requirements as MVA, thus allowing computationally efficient solutions of large priority queuing networks. The accuracy of the MVA approximation is systematically investigated and presented. It is shown that the approximation can compute the average performance measures of priority networks to within an accuracy of 5 percent for a large range of network parameter values. Accuracy of the method is shown to be superior to that of Sevcik's shadow approximation

    Simple bounds for queueing systems with breakdowns

    Get PDF
    Computationally attractive and intuitively obvious simple bounds are proposed for finite service systems which are subject to random breakdowns. The services are assumed to be exponential. The up and down periods are allowed to be generally distributed. The bounds are based on product-form modifications and depend only on means. A formal proof is presented. This proof is of interest in itself. Numerical support indicates a potential usefulness for quick engineering and performance evaluation purposes

    Many-server queues with customer abandonment: numerical analysis of their diffusion models

    Full text link
    We use multidimensional diffusion processes to approximate the dynamics of a queue served by many parallel servers. The queue is served in the first-in-first-out (FIFO) order and the customers waiting in queue may abandon the system without service. Two diffusion models are proposed in this paper. They differ in how the patience time distribution is built into them. The first diffusion model uses the patience time density at zero and the second one uses the entire patience time distribution. To analyze these diffusion models, we develop a numerical algorithm for computing the stationary distribution of such a diffusion process. A crucial part of the algorithm is to choose an appropriate reference density. Using a conjecture on the tail behavior of a limit queue length process, we propose a systematic approach to constructing a reference density. With the proposed reference density, the algorithm is shown to converge quickly in numerical experiments. These experiments also show that the diffusion models are good approximations for many-server queues, sometimes for queues with as few as twenty servers

    A tight bound on the throughput of queueing networks with blocking

    Get PDF
    In this paper, we present a bounding methodology that allows to compute a tight lower bound on the cycle time of fork--join queueing networks with blocking and with general service time distributions. The methodology relies on two ideas. First, probability masses fitting (PMF) discretizes the service time distributions so that the evolution of the modified network can be modelled by a Markov chain. The PMF discretization is simple: the probability masses on regular intervals are computed and aggregated on a single value in the orresponding interval. Second, we take advantage of the concept of critical path, i.e. the sequence of jobs that covers a sample run. We show that the critical path can be computed with the discretized distributions and that the same sequence of jobs offers a lower bound on the original cycle time. The tightness of the bound is shown on computational experiments. Finally, we discuss the extension to split--and--merge networks and approximate estimations of the cycle time.queueing networks, blocking, throughput, bound, probability masses fitting, critical path.
    corecore