43,178 research outputs found

    Improving root cause analysis through the integration of PLM systems with cross supply chain maintenance data

    Get PDF
    The purpose of this paper is to demonstrate a system architecture for integrating Product Lifecycle Management (PLM) systems with cross supply chain maintenance information to support root-cause analysis. By integrating product-data from PLM systems with warranty claims, vehicle diagnostics and technical publications, engineers were able to improve the root-cause analysis and close the information gaps. Data collection was achieved via in-depth semi-structured interviews and workshops with experts from the automotive sector. Unified Modelling Language (UML) diagrams were used to design the system architecture proposed. A user scenario is also presented to demonstrate the functionality of the system

    Elinkaaritiedon hallinta tuotetietomallissa

    Get PDF
    In modern, global manufacturing business, value is increasingly created by services related to products rather than the products themselves. In industries related to the built environment, various products installed in the buildings are a major asset for the operators and managers of buildings. Product Lifecycle Management (PLM), managing and exploiting product-related information throughout the lifecycle of the product, has become both a requirement and an important tool for effective service business development. Extensive and interactive PLM requires a universal system for information exchange across the lifecycles of buildings and products. The objective of the study is to define and implement the minimum requirements set by a product-centric information exchange system in an IFC-based product information model, based on use case of managing installed medical equipment in hospital environment. The study comprises a literature analysis and a use case. Late literature was reviewed to analyse developments of intelligence and lifecycle management in products and buildings. It was found that major challenges exist in exchanging lifecycle information between stakeholders and across lifecycle stages. Based on the analysis, it is proposed that using the technologies of building information modelling and a product-centric information exchange system could provide novel solutions to the identified challenges. In the use case, a method was developed for incorporating an open, product-centric PLM information exchange system into the existing IFC standard. It was found that an URI-based, product-centric information exchange system using external databases and product servers satisfies the requirements of effective PLM information exchange. Additionally, it was found that using IFC for product information modelling can effectively support such a system by linking virtual building and product information models into the lifecycle information stored in external servers.Nykyaikaisessa, kansainvälisessä valmistavan teollisuuden liiketoiminnassa arvoa luodaan entistä enemmän tuotteisiin liittyvillä palveluilla kuin itse tuotteilla. Rakennettuun ympäristöön liittyvässä liiketoiminnassa rakennuksiin asennetut tuotteet muodostavat suuren pääoman rakennusten käyttäjille ja hallinnoijille. Tuotteiden elinkaaren hallinta (Product Lifecycle Management, PLM), eli tuotteisiin liittyvän tiedon hallinta ja hyödyntäminen tuotteen elinkaaren aikana, on muodostunut sekä vaatimukseksi että tärkeäksi työkaluksi tehokkaiden liiketoiminnallisten palvelujen kehittämisessä. Laaja-alainen ja vuorovaikutteinen PLM edellyttää yleismaailmallista tiedonvaihtojärjestelmää rakennusten ja tuotteiden elinkaarten varrelle. Työn tavoitteena on määritellä ja toteuttaa tuotekeskeisen tiedonvaihtojärjestelmän asettamat vähimmäisvaatimukset IFC-pohjaiseen tuotetietomalliin käyttötapauksessa (use case), jossa kiinteästi asennettavia lääkinnällisiä laitteita hallitaan sairaalaympäristössä. Työ koostuu kirjallisuustutkimuksesta ja käyttötapauksesta. Tuotteiden ja rakennusten elinkaaren hallinnan ja älyn kehitystä analysoitiin kirjallisuuslähteiden perusteella. Elinkaaren aikaisen tiedon vaihtamisessa osapuolten ja elinkaaren vaiheiden välillä havaittiin merkittäviä haasteita. Analyysin perusteella työssä esitetään, että tietomallintamisen teknologioiden ja tuotekeskeisen tiedonvaihtojärjestelmän käyttäminen voivat tarjota uusia ratkaisuja tunnistettuihin haasteisiin. Käyttötapauksessa kehitettiin menetelmä avoimen, tuotekeskeisen PLM-tiedonvaihtojärjestelmän yhdistämiseksi nykyiseen IFC-standardiin. Työssä havaittiin, että URI:in perustuva, ulkoisia tietokantoja ja tuotepalvelimia hyödyntävä tuotekeskeinen tiedonvaihtojärjestelmä täyttää tehokkaan PLM-tiedonvaihdon vaatimukset. Lisäksi havaittiin, että tuotteiden tietomallintaminen IFC:ia käyttämällä tukee järjestelmää tehokkaasti linkittämällä virtuaaliset rakennus- ja tuotetietomallit ulkoisilla palvelimilla sijaitsevaan elinkaaritietoon

    Eco Global Evaluation: Cross Benefits of Economic and Ecological Evaluation

    Get PDF
    This paper highlights the complementarities of cost and environmental evaluation in a sustainable approach. Starting with the needs and limits for whole product lifecycle evaluation, this paper begins with the modeling, data capture and performance indicator aspects. In a second step, the information issue, regarding the whole lifecycle of the product is addressed. In order to go further than the economical evaluations/assessment, the value concept (for a product or a service) is discussed. Value could combine functional requirements, cost objectives and environmental impact. Finally, knowledge issues which address the complexity of integrating multi-disciplinary expertise to the whole lifecycle of a product are discussing.EcoSD NetworkEcoSD networ

    Data-driven through-life costing to support product lifecycle management solutions in innovative product development

    Get PDF
    Innovative product usually refers to product that comprises of creativity and new ideas. In the development of such a new product, there is often a lack of historical knowledge and data available to be used to perform cost estimation accurately. This is due to the fact that traditional cost estimation methods are used to predict costs only after a product model has been built, and not at an early design stage when there is little data and information available. In light of this, original equipment manufacturers are also facing critical challenges of becoming globally competitive and increasing demands from customer for continuous innovation. To alleviate these situations this research has identified a new approach to cost modelling with the inclusion of product lifecycle management solutions to address innovative product development.The aim of this paper, therefore, is to discuss methods of developing an extended-enterprise data-driven through-life cost estimating method for innovative product development

    Framework for Product Lifecycle Management integration in Small and Medium Enterprises networks

    Get PDF
    In order to improve the performance of extended enterprises, Small and Medium Enterprises (SMEs) must be integrated into the extended networks. This integration must be carried out on several levels which are mastered by the Product Lifecycle Management (PLM). But, PLM is underdeveloped in SMEs mainly because of the difficulties in implementing information systems. This paper aims to propose a modeling framework to facilitate the implementation of PLM systems in SMEs. Our approach proposes a generic model for the creation of processes and data models. These models are explained, based on the scope and framework of the modeling, in order to highlight the improvements provided

    Integrated product relationships management : a model to enable concurrent product design and assembly sequence planning

    Get PDF
    The paper describes a novel approach to product relationships management in the context of concurrent engineering and product lifecycle management (PLM). Current industrial practices in product data management and manufacturing process management systems require better efficiency, flexibility, and sensitivity in managing product information at various levels of abstraction throughout its lifecycle. The aim of the proposed work is to manage vital yet complex and inherent product relationship information to enable concurrent product design and assembly sequence planning. Indeed, the definition of the product with its assembly sequence requires the management and the understanding of the numerous product relationships, ensuring consistency between the product and its components. This main objective stresses the relational design paradigm by focusing on product relationships along its lifecycle. This paper gives the detailed description of the background and models which highlight the need for a more efficient PLM approach. The proposed theoretical approach is then described in detail. A separate paper will focus on the implementation of the proposed approach in a PLM-based application, and an in-depth case study to evaluate the implementation of the novel approach will also be given

    Practitioner requirements for integrated Knowledge-Based Engineering in Product Lifecycle Management.

    No full text
    The effective management of knowledge as capital is considered essential to the success of engineering product/service systems. As Knowledge Management (KM) and Product Lifecycle Management (PLM) practice gain industrial adoption, the question of functional overlaps between both the approaches becomes evident. This article explores the interoperability between PLM and Knowledge-Based Engineering (KBE) as a strategy for engineering KM. The opinion of key KBE/PLM practitioners are systematically captured and analysed. A set of ranked business functionalities to be fulfiled by the KBE/PLM systems integration is elicited. The article provides insights for the researchers and the practitioners playing both the user and development roles on the future needs for knowledge systems based on PLM

    Intelligent Products: Shifting the Production Control Logic in Construction (With Lean and BIM)

    Get PDF
    Production management and control in construction has not been addressed/updated ever since the introduction of Critical Path Method and the Last Planner® system. The predominant outside-in control logic and a fragmented and deep supply chain in construction significantly affect the efficiency over a lifecycle. In a construction project, a large number of organisations interact with the product throughout the process, requiring a significant amount of information handling and synchronisation between these organisations. However, due to the deep supply chains and problems with lack of information integration, the information flow down across the lifecycle poses a significant challenge. This research proposes a product centric system, where the control logic of the production process is embedded within the individual components from the design phase. The solution is enabled by a number of technologies and tools such as Building Information Modelling, Internet of Things, Messaging Systems and within the conceptual process framework of Lean Construction. The vision encompasses the lifecycle of projects from design to construction and maintenance, where the products can interact with the environment and its actors through various stages supporting a variety of actions. The vision and the tools and technologies required to support it are described in this pape

    The PACTUM model: product analysis of cost and time using mathematics

    Get PDF
    Establishing a mathematical supply-chain model is a proposition that has received attention due to its inherent benefits of evolving global supply-chain efficiencies. This paper discusses the prevailing relationships found within apparel supply-chain environments, and contemplates the complex issues indicated for constituting a mathematical model. Principal results identified within the data suggest, that the multifarious nature of global supply-chain activities require a degree of simplification in order to fully dilate the necessary factors which affect, each sub-section of the chain. Subsequently, the research findings allowed the division of supply-chain components into sub-sections, which amassed a coherent method of product development activity. Concurrently, the supply-chain model was found to allow systematic mathematical formulae analysis, of cost and time, within the multiple contexts of each sub-section encountered. The paper indicates the supply-chain model structure, the mathematics, and considers how product analysis of cost and time can improve the comprehension of product lifecycle management
    corecore