154,350 research outputs found

    On the condition numbers of a multiple generalized eigenvalue

    Full text link
    For standard eigenvalue problems, a closed-form expression for the condition numbers of a multiple eigenvalue is known. In particular, they are uniformly 1 in the Hermitian case, and generally take different values in the non-Hermitian case. We consider the generalized eigenvalue problem and identify the condition numbers of a multiple eigenvalue. Our main result is that a multiple eigenvalue generally has multiple condition numbers, even in the Hermitian definite case. The condition numbers are characterized in terms of the singular values of the outer product of the corresponding left and right eigenvectors

    An integral method for solving nonlinear eigenvalue problems

    Full text link
    We propose a numerical method for computing all eigenvalues (and the corresponding eigenvectors) of a nonlinear holomorphic eigenvalue problem that lie within a given contour in the complex plane. The method uses complex integrals of the resolvent operator, applied to at least kk column vectors, where kk is the number of eigenvalues inside the contour. The theorem of Keldysh is employed to show that the original nonlinear eigenvalue problem reduces to a linear eigenvalue problem of dimension kk. No initial approximations of eigenvalues and eigenvectors are needed. The method is particularly suitable for moderately large eigenvalue problems where kk is much smaller than the matrix dimension. We also give an extension of the method to the case where kk is larger than the matrix dimension. The quadrature errors caused by the trapezoid sum are discussed for the case of analytic closed contours. Using well known techniques it is shown that the error decays exponentially with an exponent given by the product of the number of quadrature points and the minimal distance of the eigenvalues to the contour

    The nonconforming virtual element method for eigenvalue problems

    Full text link
    We analyse the nonconforming Virtual Element Method (VEM) for the approximation of elliptic eigenvalue problems. The nonconforming VEM allow to treat in the same formulation the two- and three-dimensional case.We present two possible formulations of the discrete problem, derived respectively by the nonstabilized and stabilized approximation of the L^2-inner product, and we study the convergence properties of the corresponding discrete eigenvalue problem. The proposed schemes provide a correct approximation of the spectrum, in particular we prove optimal-order error estimates for the eigenfunctions and the usual double order of convergence of the eigenvalues. Finally we show a large set of numerical tests supporting the theoretical results, including a comparison with the conforming Virtual Element choice

    The Bramble-Pasciak preconditioner for saddle point problems

    Get PDF
    The Bramble-Pasciak Conjugate Gradient method is a well known tool to solve linear systems in saddle point form. A drawback of this method in order to ensure applicability of Conjugate Gradients is the need for scaling the preconditioner which typically involves the solution of an eigenvalue problem. Here, we introduce a modified preconditioner and inner product which without scaling enable the use of a MINRES variant and can be used for the simplified Lanczos process. Furthermore, the modified preconditioner and inner product can be combined with the original Bramble-Pasciak setup to give new preconditioners and inner products. We undermine the new methods by showing numerical experiments for Stokes problems
    corecore