49,801 research outputs found

    The feasibility of using virtual prototyping technologies for product evaluation

    Get PDF
    With the continuous development in computer and communications technology the use of computer aided design in design processes is becoming more commonplace. A wide range of virtual prototyping technologies are currently in development, some of which are commercially viable for use within a product design process. These virtual prototyping technologies range from graphics tablets to haptic devices. With the compression of design cycles the feasibility of using these technologies for product evaluation is becoming an ever more important consideration. This thesis begins by presenting the findings of a comprehensive literature review defining product design with a focus on product evaluation and a discussion of current virtual prototyping technologies. From the literature review it was clear that user involvement in the product evaluation process is critical. The literature review was followed by a series of interconnected studies starting with an investigation into design consultancies' access and use of prototyping technologies and their evaluation methods. Although design consultancies are already using photo-realistic renderings, animations and sometimes 3600 view CAD models for their virtual product evaluations, current virtual prototyping hardware and software is often unsatisfactory for their needs. Some emergent technologies such as haptic interfaces are currently not commonly used in industry. This study was followed by an investigation into users' psychological acceptance and physiological discomfort when using a variety of virtual prototyping tools for product evaluation compared with using physical prototypes, ranging from on-screen photo-realistic renderings to 3D 3600 view models developed using a range of design software. The third study then went on to explore the feasibility of using these virtual prototyping tools and the effect on product preference when compared to using physical prototypes. The forth study looked at the designer's requirements for current and future virtual prototyping tools, design tools and evaluation methods. In the final chapters of the thesis the relative strengths and weaknesses of these technologies were re-evaluated and a definitive set of user requirements based on the documentary evidence of the previous studies was produced. This was followed by the development of a speculative series of scenarios for the next generation of virtual prototyping technologies ranging from improvements to existing technologies through to blue sky concepts. These scenarios were then evaluated by designers and consumers to produce documentary evidence and recommendations for preferred and suitable combinations of virtual prototyping technologies. Such hardware and software will require a user interface that is intuitive, simple, easy to use and suitable for both the designers who create the virtual prototypes and the consumers who evaluate them

    Parametric virtual concept design of heavy machinery: a case study application

    Get PDF
    Virtual prototyping enables the validation and optimization of machinery equivalent to physical testing, saving time and costs in the product development, especially in case of heavy machines with complex motions. However, virtual prototyping is usually deployed only at the end of the design process, when product architecture is already developed. The present paper discusses the introduction of virtual prototypes since conceptual design stage as Virtual Concepts in which coarse models of machinery design variants are simulated obtaining useful information, sometimes fundamental to support best design choices. Virtual Concept modeling and preliminary validation and its later integration to a Virtual Prototype are expressly investigated using Multi Body Dynamics software. A verification case study on a large vibrating screen demonstrates that dynamic Virtual Concepts enable easier and effective evaluations on the design variants and increase the design process predictability

    RANCANG MEDIA PEMBELAJARAN VIRTUAL TOUR PADA MATERI SUMPAH PEMUDA KELAS V SDN 169 PELITA BANDUNG

    Get PDF
    The background of this research is about the lack of variety in the use of digital-based learning media, such as the virtual tour of the Youth Pledge Museum on the Youth Pledge material in class V SD. The purpose of this study is to design and develop a virtual tour-based learning media. This study uses the Design and Development (D&D) research method with the ADDIE (Analysis, Design, Development, Implementation, and Evaluation) procedure. This research produces a product in the form of a virtual tour of the material for the Youth Pledge of 5th grade elementary school by going through two stages of the ADDIE procedure. The first stage is an analysis that includes an analysis of needs, student characteristics, initial abilities, and analysis of the learning environment. The analysis phase was carried out through face-to-face interviews with the homeroom teacher of SDN 169 Pelita Bandung. The second stage is about the design of instructional media (product) designs. There are several parts needed in designing a product, namely resources, selecting and determining the scope, structure, and sequence of materials, such as an outline of media programs and flowcharts along with product prototyping. Product prototypes consist of websites, virtual media tours, and quizzes on Quizizz

    Improving overlapping between testing and design in engineering product development processes

    Get PDF
    Testing components, prototypes and products comprise essential, but time consuming activities throughout the product development process particularly for complex iteratively designed products. To reduce product development time, testing and design processes are often overlapped. A key research question is how this overlapping can be planned and managed to minimise risks and costs. The first part of this research study investigates how a case study company plans testing and design processes and how they manage these overlaps. The second part of the study proposes a significant modification to the existing process configuration for design and testing, which explicitly identifies virtual testing, that is an extension to Computer Aided Engineering which mirrors the testing process through product modelling and simulation, as a distinct and significant activity used to (a) enhance and (b) replace some physical tests. The analysis shows how virtual testing can mediate information flows between overlapping (re)design and physical tests. The effects of virtual testing to support overlap of test and (re)design is analysed for the development phases of diesel engine design at a case study company. We assess the costs and risks of overlaps and their amelioration through targeted virtual testing. Finally, using the analysis of the complex interactions between (re)design, physical and virtual testing, and the scope for replacing physical with virtual testing is examined

    A survey of virtual prototyping techniques for mechanical product development

    Get PDF
    Repeated, efficient, and extensive use of prototypes is a vital activity that can make the difference between successful and unsuccessful entry of new products into the competitive world market. In this respect, physical prototyping can prove to be very lengthy and expensive, especially if modifications resulting from design reviews involve tool redesign. The availability and affordability of advanced computer technology has paved the way for increasing utilization of prototypes that are digital and created in computer-based environments, i.e. they are virtual as opposed to being physical. The technology for using virtual prototypes was pioneered and adopted initially by large automotive and aerospace industries. Small-to-medium enterprises (SMEs) in the manufacturing industry also need to take virtual prototyping (VP) technology more seriously in order to exploit the benefits. VP is becoming very advanced and may eventually dominate the product development process. However, physical prototypes will still be required for the near future, albeit less frequently. This paper presents a general survey of the available VP techniques and highlights some of the most important developments and research issues while providing sources for further reference. The purpose of the paper is to provide potential SME users with a broad picture of the field of VP and to identify issues and information relevant to the deployment and implementation of VP technology

    Real time integration of user preferences into virtual prototypes

    Get PDF
    Within new product development (NPD), both virtual prototypes and physical prototypes play important roles in creating, testing and modifying designs. However, in the current design process, these two forms of prototyping methods are normally used independently and converted from one to the other during different design phases. This conversion process is time consuming and expensive and also introduces potential information loss/corruption problems. If the design process requires many iterations, it may simply be impractical to generate all the conversions that are theoretically required. Therefore, the integration of virtual and physical prototyping may offer a possible solution where the design definition is maintained simultaneously in both the virtual and physical environment. The overall aim of this research was to develop an interface or a tool that achieves real time integration of physical and virtual prototyping. “Real time integration” here means changes to the virtual prototypes will reflect any changes that have been made contemporaneously to the physical prototypes, and vice versa. Thus, conversion of the prototype from physical to virtual (or vice versa) will be achieved immediately, hence saving time and cost. A review of the literature was undertaken to determine what previous research has been conducted in this area. The result of the review shows the research in this area is still in its infancy. The research hypothesis was developed through the use of a questionnaire survey. Totally 102 questionnaires were sent to designers, design directors or design managers to address the issue: will industrial designers want to make use of real time integration and if so, how? The outcome from the literature review drove further development of the research hypothesis and an initial pilot experiment to test this. The pilot trial was designed to address the research questions: • Can real time physical and virtual prototyping integration be conveniently demonstrated? • Will designers and users be comfortable using the integration method? • Will users recognise the benefits of the integration? The results showed that real time integration between physical and virtual prototyping is necessary in helping designers develop new products and for getting users more closely involved. The future research suggested is that more investigations and experiments are needed to explore a proper method that simultaneously employing these two types of prototyping in product development process. Keywords: Physical Prototyping; Virtual Prototyping; Integration; Real Time.</p

    Virtual bloXing - assembly rapid prototyping for near net shapes

    Get PDF
    Virtual reality (VR) provides another dimension to many engineering applications. Its immersive and interactive nature allows an intuitive approach to study both cognitive activities and performance evaluation. Market competitiveness means having products meet form, fit and function quickly. Rapid Prototyping and Manufacturing (RP&M) technologies are increasingly being applied to produce functional prototypes and the direct manufacturing of small components. Despite its flexibility, these systems have common drawbacks such as slow build rates, a limited number of build axes (typically one) and the need for post processing. This paper presents a Virtual Assembly Rapid Prototyping (VARP) project which involves evaluating cognitive activities in assembly tasks based on the adoption of immersive virtual reality along with a novel nonlayered rapid prototyping for near net shape (NNS) manufacturing of components. It is envisaged that this integrated project will facilitate a better understanding of design for manufacture and assembly by utilising equivalent scale digital and physical prototyping in one rapid prototyping system. The state of the art of the VARP project is also presented in this paper

    Industry-driven innovative system development for the construction industry: The DIVERCITY project

    Get PDF
    Collaborative working has become possible using the innovative integrated systems in construction as many activities are performed globally with stakeholders situated in various locations. The Integrated VR based information systems can bind the fragmentation and provide communication and collaboration between the distributed stakeholders n various locations. The development of these technologies is vital for the uptake of these systems by the construction industry. This paper starts by emphasising the importance of construction IT research and reviews some future research directions in this area. In particular, the paper explores how virtual prototyping can improve the productivity and effectiveness of construction projects, and presents DIVERCITY, which is th as a case study of the research in virtual prototyping. Besides, the paper explores the requirements engineering of the DIVERCITY project. DIVERCITY has large and evolving requirements, which considered the perspectives of multiple stakeholders, such as clients, architects and contractors. However, practitioners are often unsure of the detail of how virtual environments would support the construction process, and how to overcome some barriers to the introduction of new technologies. This complicates the requirements engineering process
    • …
    corecore