142 research outputs found

    A survey of multi-access edge computing in 5G and beyond : fundamentals, technology integration, and state-of-the-art

    Get PDF
    Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research

    A review on green caching strategies for next generation communication networks

    Get PDF
    © 2020 IEEE. In recent years, the ever-increasing demand for networking resources and energy, fueled by the unprecedented upsurge in Internet traffic, has been a cause for concern for many service providers. Content caching, which serves user requests locally, is deemed to be an enabling technology in addressing the challenges offered by the phenomenal growth in Internet traffic. Conventionally, content caching is considered as a viable solution to alleviate the backhaul pressure. However, recently, many studies have reported energy cost reductions contributed by content caching in cache-equipped networks. The hypothesis is that caching shortens content delivery distance and eventually achieves significant reduction in transmission energy consumption. This has motivated us to conduct this study and in this article, a comprehensive survey of the state-of-the-art green caching techniques is provided. This review paper extensively discusses contributions of the existing studies on green caching. In addition, the study explores different cache-equipped network types, solution methods, and application scenarios. We categorically present that the optimal selection of the caching nodes, smart resource management, popular content selection, and renewable energy integration can substantially improve energy efficiency of the cache-equipped systems. In addition, based on the comprehensive analysis, we also highlight some potential research ideas relevant to green content caching

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions

    Emerging Edge Computing Technologies for Distributed Internet of Things (IoT) Systems

    Get PDF
    The ever-increasing growth in the number of connected smart devices and various Internet of Things (IoT) verticals is leading to a crucial challenge of handling massive amount of raw data generated from distributed IoT systems and providing real-time feedback to the end-users. Although existing cloud-computing paradigm has an enormous amount of virtual computing power and storage capacity, it is not suitable for latency-sensitive applications and distributed systems due to the involved latency and its centralized mode of operation. To this end, edge/fog computing has recently emerged as the next generation of computing systems for extending cloud-computing functions to the edges of the network. Despite several benefits of edge computing such as geo-distribution, mobility support and location awareness, various communication and computing related challenges need to be addressed in realizing edge computing technologies for future IoT systems. In this regard, this paper provides a holistic view on the current issues and effective solutions by classifying the emerging technologies in regard to the joint coordination of radio and computing resources, system optimization and intelligent resource management. Furthermore, an optimization framework for edge-IoT systems is proposed to enhance various performance metrics such as throughput, delay, resource utilization and energy consumption. Finally, a Machine Learning (ML) based case study is presented along with some numerical results to illustrate the significance of edge computing.Comment: 16 pages, 4 figures, 2 tables, submitted to IEEE Wireless Communications Magazin

    A survey on intelligent computation offloading and pricing strategy in UAV-Enabled MEC network: Challenges and research directions

    Get PDF
    The lack of resource constraints for edge servers makes it difficult to simultaneously perform a large number of Mobile Devices’ (MDs) requests. The Mobile Network Operator (MNO) must then select how to delegate MD queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading in the UAV-MEC network. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network
    • …
    corecore