2,815,041 research outputs found
Data in Business Process Models. A Preliminary Empirical Study
Traditional activity-centric process modeling languages treat data as simple black boxes acting as input or output for activities. Many alternate and emerging process modeling paradigms, such as case handling and artifact-centric process modeling, give data a more central role. This is achieved by introducing lifecycles and states for data objects, which is beneficial when modeling data-or knowledge-intensive processes. We assume that traditional activity-centric process modeling languages lack the capabilities to adequately capture the complexity of such processes. To verify this assumption we conducted an online interview among BPM experts. The results not only allow us to identify various profiles of persons modeling business processes, but also the problems that exist in contemporary modeling languages w.r.t. The modeling of business data. Overall, this preliminary empirical study confirms the necessity of data-awareness in process modeling notations in general
Holonic Business Process Modeling in Small to Medium Sized Enterprises
Holonic modeling analysis which is the application of system thinking in design, manage, and improvement, is used in a novel context for business process modeling. An approach and techniques of holon and holarchies is presented specifically for small and medium sized enterprise process modeling development. The fitness of the approach is compared with well known reductionist or task breakdown approach. The strength and weaknesses of the holonic modeling is discussed with illustrating case example in term of its suitability for an Indonesia's small and medium sized industry. The novel ideas in this paper have great impact on the way analyst should perceive business process. Future research is applying the approach in supply chain context
Higher-Order Process Modeling: Product-Lining, Variability Modeling and Beyond
We present a graphical and dynamic framework for binding and execution of
business) process models. It is tailored to integrate 1) ad hoc processes
modeled graphically, 2) third party services discovered in the (Inter)net, and
3) (dynamically) synthesized process chains that solve situation-specific
tasks, with the synthesis taking place not only at design time, but also at
runtime. Key to our approach is the introduction of type-safe stacked
second-order execution contexts that allow for higher-order process modeling.
Tamed by our underlying strict service-oriented notion of abstraction, this
approach is tailored also to be used by application experts with little
technical knowledge: users can select, modify, construct and then pass
(component) processes during process execution as if they were data. We
illustrate the impact and essence of our framework along a concrete, realistic
(business) process modeling scenario: the development of Springer's
browser-based Online Conference Service (OCS). The most advanced feature of our
new framework allows one to combine online synthesis with the integration of
the synthesized process into the running application. This ability leads to a
particularly flexible way of implementing self-adaption, and to a particularly
concise and powerful way of achieving variability not only at design time, but
also at runtime.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455
Additive Kernels for Gaussian Process Modeling
Gaussian Process (GP) models are often used as mathematical approximations of
computationally expensive experiments. Provided that its kernel is suitably
chosen and that enough data is available to obtain a reasonable fit of the
simulator, a GP model can beneficially be used for tasks such as prediction,
optimization, or Monte-Carlo-based quantification of uncertainty. However, the
former conditions become unrealistic when using classical GPs as the dimension
of input increases. One popular alternative is then to turn to Generalized
Additive Models (GAMs), relying on the assumption that the simulator's response
can approximately be decomposed as a sum of univariate functions. If such an
approach has been successfully applied in approximation, it is nevertheless not
completely compatible with the GP framework and its versatile applications. The
ambition of the present work is to give an insight into the use of GPs for
additive models by integrating additivity within the kernel, and proposing a
parsimonious numerical method for data-driven parameter estimation. The first
part of this article deals with the kernels naturally associated to additive
processes and the properties of the GP models based on such kernels. The second
part is dedicated to a numerical procedure based on relaxation for additive
kernel parameter estimation. Finally, the efficiency of the proposed method is
illustrated and compared to other approaches on Sobol's g-function
Comparison of Gaussian process modeling software
Gaussian process fitting, or kriging, is often used to create a model from a
set of data. Many available software packages do this, but we show that very
different results can be obtained from different packages even when using the
same data and model. We describe the parameterization, features, and
optimization used by eight different fitting packages that run on four
different platforms. We then compare these eight packages using various data
functions and data sets, revealing that there are stark differences between the
packages. In addition to comparing the prediction accuracy, the predictive
variance--which is important for evaluating precision of predictions and is
often used in stopping criteria--is also evaluated
- …
