4,064,691 research outputs found
A Process Algebra Software Engineering Environment
In previous work we described how the process algebra based language PSF can
be used in software engineering, using the ToolBus, a coordination architecture
also based on process algebra, as implementation model. In this article we
summarize that work and describe the software development process more formally
by presenting the tools we use in this process in a CASE setting, leading to
the PSF-ToolBus software engineering environment. We generalize the refine step
in this environment towards a process algebra based software engineering
workbench of which several instances can be combined to form an environment
Software-Engineering Process Simulation (SEPS) model
The Software Engineering Process Simulation (SEPS) model is described which was developed at JPL. SEPS is a dynamic simulation model of the software project development process. It uses the feedback principles of system dynamics to simulate the dynamic interactions among various software life cycle development activities and management decision making processes. The model is designed to be a planning tool to examine tradeoffs of cost, schedule, and functionality, and to test the implications of different managerial policies on a project's outcome. Furthermore, SEPS will enable software managers to gain a better understanding of the dynamics of software project development and perform postmodern assessments
Process system engineering in biodiesel production: a review
Biodiesel is fast becoming a popular alternative to fossil fuels, as it is natural, renewable and has low toxic emissions. Strategies that have been adopted to ensure continued growth of the biodiesel industry are policy development, reduction of biodiesel tax, offset funding for incremental fuel cost from CO2 emission fuel and support for research and development of potential biodiesel feedstocks. Recent innovations of biodiesel processes are focused on the development of more efficient catalysts and in the utilization of novel reaction media such as supercritical fluids as well as on a variety of oil feedstocks such as virgin and waste oils. Biodiesel production involves complex processes which require systematic process design and optimization. The main aim of designing biodiesel plants is to maxime conversion of ethyl or methyl esters at the lowest capital cost of the plant. The design should also consider safety and environmental concerns. Process system engineering (PSE) is a systematic approach to design and analyze complex processes by using a variety of PSE tools for the optimization of biodiesel production. This paper reviews the latest PSE tools used in development of novel biodiesel processes. It describes the main PSE elements such as process model development and product design, simulation of biodiesel processes, optimization of biodiesel synthesis, and integration of reactor and separation systems. This review also highlights the sustainability of biodiesel production
Managing design variety, process variety and engineering change: a case study of two capital good firms
Many capital good firms deliver products that are not strictly one-off, but instead share a certain degree of similarity with other deliveries. In the delivery of the product, they aim to balance stability and variety in their product design and processes. The issue of engineering change plays an important in how they manage to do so. Our aim is to gain more understanding into how capital good firms manage engineering change, design variety and process variety, and into the role of the product delivery strategies they thereby use. Product delivery strategies are defined as the type of engineering work that is done independent of an order and the specification freedom the customer has in the remaining part of the design. Based on the within-case and cross-case analysis of two capital good firms several mechanisms for managing engineering change, design variety and process variety are distilled. It was found that there exist different ways of (1) managing generic design information, (2) isolating large engineering changes, (3) managing process variety, (4) designing and executing engineering change processes. Together with different product delivery strategies these mechanisms can be placed within an archetypes framework of engineering change management. On one side of the spectrum capital good firms operate according to open product delivery strategies, have some practices in place to investigate design reuse potential, isolate discontinuous engineering changes into the first deliveries of the product, employ ‘probe and learn’ process management principles in order to allow evolving insights to be accurately executed and have informal engineering change processes. On the other side of the spectrum capital good firms operate according to a closed product delivery strategy, focus on prevention of engineering changes based on design standards, need no isolation mechanisms for discontinuous engineering changes, have formal process management practices in place and make use of closed and formal engineering change procedures. The framework should help managers to (1) analyze existing configurations of product delivery strategies, product and process designs and engineering change management and (2) reconfigure any of these elements according to a ‘misfit’ derived from the framework. Since this is one of the few in-depth empirical studies into engineering change management in the capital good sector, our work adds to the understanding on the various ways in which engineering change can be dealt with
Engineering Workflow: The Process in Product Data Technology
The prevailing paradigm for enterprises in the new decade is undoubtedly speed. This enterprise view is driven by the availability of e-business technology that enables new forms of collaboration between companies. The rapid developments in e-business also have an impact on the future of engineering organizations. This paper focuses on the early phases of a product’s life cycle, i.e. between initial concept and release to manufacturing. New engineering workflow capabilities are presented, that have been tailored to speed up the engineering of new products
The Impact of Engineering Design Process in Teaching and Learning to Enhance Students' Science Problem-Solving Skills
This study aimed to determine the impact of the integration of engineering design process (asking, imagining, planning, creating and improving) in an electrical & magnetism module to improve problem-solving skills in physics among secondary school students in Aceh, Indonesia. The quasi-experimental study was carried out with 82 form three (age 15 years old) students of a secondary school in Aceh Besar, Indonesia. The first author had randomly chosen two classes as the experimental group and two other classes as the control group. Independent samples t-test analysis was conducted to determine the difference between the physics teaching and learning module which integrated the five steps of engineering design process and the existing commonly used science “Pudak” teaching and learning module. The results of the independent samples t-test analysis showed that the use of the physics teaching and learning module which integrated the five steps of engineering design process was more effective compared to the use of the existing “Pudak” module in increasing the students' skills in solving physics problems. The findings of the study suggest that the science learning approach is appropriate to be applied in the teaching and learning of science to enhance science problem-solving skills among secondary school students. In addition, it can be used as a guide for teachers on how to implement the integration of the five steps of engineering design process in science teaching and learning practices
Process system engineering in biodiesel production: a review
Biodiesel is fast becoming a popular alternative to fossil fuels, as it is natural, renewable and has low toxic emissions. Strategies that have been adopted to ensure continued growth of the biodiesel industry are policy development, reduction of biodiesel tax, offset funding for incremental fuel cost from CO2 emission fuel and support for research and development of potential biodiesel feedstocks. Recent innovations of biodiesel processes are focused on the development of more efficient catalysts and in the utilization of novel reaction media such as supercritical fluids as well as on a variety of oil feedstocks such as virgin and waste oils. Biodiesel production involves complex processes which require systematic process design and optimization. The main aim of designing biodiesel plants is to maxime conversion of ethyl or methyl esters at the lowest capital cost of the plant. The design should also consider safety and environmental concerns. Process system engineering (PSE) is a systematic approach to design and analyze complex processes by using a variety of PSE tools for the optimization of biodiesel production. This paper reviews the latest PSE tools used in development of novel biodiesel processes. It describes the main PSE elements such as process model development and product design, simulation of biodiesel processes, optimization of biodiesel synthesis, and integration of reactor and separation systems. This review also highlights the sustainability of biodiesel production
Globally Distributed Software Process Engineering
Software processes is becoming a more addressed
issue in software development companies every day. These
processes are defined regardless of the environment in which
they run. To incorporate aspects of that environment is essential,
especially if referring to GSE. Despite this fact, the process itself
should not be necessary modified. This paper provides a first
draft of a research focused on software process definition,
modeling, implementation and evaluation in a GSE environment,
so as to facilitate the information exchange through a
hierarchical process that does not involve modification of specific
processes.Ministerio de Educación y Ciencia TIN2007-67843-C06-03Ministerio de Educación y Ciencia TIN2010-20057-C03-0
- …
