2,138 research outputs found

    A systematic approach to atomicity decomposition in Event-B

    No full text
    Event-B is a state-based formal method that supports a refinement process in which an abstract model is elaborated towards an implementation in a step-wise manner. One weakness of Event-B is that control flow between events is typically modelled implicitly via variables and event guards. While this fits well with Event-B refinement, it can make models involving sequencing of events more difficult to specify and understand than if control flow was explicitly specified. New events may be introduced in Event-B refinement and these are often used to decompose the atomicity of an abstract event into a series of steps. A second weakness of Event-B is that there is no explicit link between such new events that represent a step in the decomposition of atomicity and the abstract event to which they contribute. To address these weaknesses, atomicity decomposition diagrams support the explicit modelling of control flow and refinement relationships for new events. In previous work,the atomicity decomposition approach has been evaluated manually in the development of two large case studies, a multi media protocol and a spacecraft sub-system. The evaluation results helped us to develop a systematic definition of the atomicity decomposition approach, and to develop a tool supporting the approach. In this paper we outline this systematic definition of the approach, the tool that supports it and evaluate the contribution that the tool makes

    Language and tool support for event refinement structures in Event-B

    No full text
    Event-B is a formal method for modelling and verifying the consistency of chains of model refinements. The event refinement structure (ERS) approach augments Event-B with a graphical notation which is capable of explicit representation of control flows and refinement relationships. In previous work, the ERS approach has been evaluated manually in the development of two large case studies, a multimedia protocol and a spacecraft sub-system. The evaluation results helped us to extend the ERS constructors, to develop a systematic definition of ERS, and to develop a tool supporting ERS. We propose the ERS language which systematically defines the semantics of the ERS graphical notation including the constructors. The ERS tool supports automatic construction of the Event-B models in terms of control flows and refinement relationships. In this paper we outline the systematic definition of ERS including the presentation of constructors, the tool that supports it and evaluate the contribution that ERS and its tool make. Also we present how the systematic definition of ERS and the corresponding tool can ensure a consistent encoding of the ERS diagrams in the Event-B models

    Towards a Novel Cooperative Logistics Information System Framework

    Get PDF
    Supply Chains and Logistics have a growing importance in global economy. Supply Chain Information Systems over the world are heterogeneous and each one can both produce and receive massive amounts of structured and unstructured data in real-time, which are usually generated by information systems, connected objects or manually by humans. This heterogeneity is due to Logistics Information Systems components and processes that are developed by different modelling methods and running on many platforms; hence, decision making process is difficult in such multi-actor environment. In this paper we identify some current challenges and integration issues between separately designed Logistics Information Systems (LIS), and we propose a Distributed Cooperative Logistics Platform (DCLP) framework based on NoSQL, which facilitates real-time cooperation between stakeholders and improves decision making process in a multi-actor environment. We included also a case study of Hospital Supply Chain (HSC), and a brief discussion on perspectives and future scope of work

    Challenges to describe QoS requirements for web services quality prediction to support web services interoperability in electronic commerce

    Get PDF
    Quality of service (QoS) is significant and necessary for web service applications quality assurance. Furthermore, web services quality has contributed to the successful implementation of Electronic Commerce (EC) applications. However, QoS is still the big issue for web services research and remains one of the main research questions that need to be explored. We believe that QoS should not only be measured but should also be predicted during the development and implementation stages. However, there are challenges and constraints to determine and choose QoS requirements for high quality web services. Therefore, this paper highlights the challenges for the QoS requirements prediction as they are not easy to identify. Moreover, there are many different perspectives and purposes of web services, and various prediction techniques to describe QoS requirements. Additionally, the paper introduces a metamodel as a concept of what makes a good web service

    Relaxed Operational Semantics of Concurrent Programming Languages

    Full text link
    We propose a novel, operational framework to formally describe the semantics of concurrent programs running within the context of a relaxed memory model. Our framework features a "temporary store" where the memory operations issued by the threads are recorded, in program order. A memory model then specifies the conditions under which a pending operation from this sequence is allowed to be globally performed, possibly out of order. The memory model also involves a "write grain," accounting for architectures where a thread may read a write that is not yet globally visible. Our formal model is supported by a software simulator, allowing us to run litmus tests in our semantics.Comment: In Proceedings EXPRESS/SOS 2012, arXiv:1208.244
    corecore