1,995,923 research outputs found

    Unfolding-Based Process Discovery

    Get PDF
    This paper presents a novel technique for process discovery. In contrast to the current trend, which only considers an event log for discovering a process model, we assume two additional inputs: an independence relation on the set of logged activities, and a collection of negative traces. After deriving an intermediate net unfolding from them, we perform a controlled folding giving rise to a Petri net which contains both the input log and all independence-equivalent traces arising from it. Remarkably, the derived Petri net cannot execute any trace from the negative collection. The entire chain of transformations is fully automated. A tool has been developed and experimental results are provided that witness the significance of the contribution of this paper.Comment: This is the unabridged version of a paper with the same title appearead at the proceedings of ATVA 201

    A recommender system for process discovery

    Get PDF
    Over the last decade, several algorithms for process discovery and process conformance have been proposed. Still, it is well-accepted that there is no dominant algorithm in any of these two disciplines, and then it is often difficult to apply them successfully. Most of these algorithms need a close-to expert knowledge in order to be applied satisfactorily. In this paper, we present a recommender system that uses portfolio-based algorithm selection strategies to face the following problems: to find the best discovery algorithm for the data at hand, and to allow bridging the gap between general users and process mining algorithms. Experiments performed with the developed tool witness the usefulness of the approach for a variety of instances.Peer ReviewedPostprint (author’s final draft

    Event Stream-Based Process Discovery using Abstract Representations

    Get PDF
    The aim of process discovery, originating from the area of process mining, is to discover a process model based on business process execution data. A majority of process discovery techniques relies on an event log as an input. An event log is a static source of historical data capturing the execution of a business process. In this paper we focus on process discovery relying on online streams of business process execution events. Learning process models from event streams poses both challenges and opportunities, i.e. we need to handle unlimited amounts of data using finite memory and, preferably, constant time. We propose a generic architecture that allows for adopting several classes of existing process discovery techniques in context of event streams. Moreover, we provide several instantiations of the architecture, accompanied by implementations in the process mining tool-kit ProM (http://promtools.org). Using these instantiations, we evaluate several dimensions of stream-based process discovery. The evaluation shows that the proposed architecture allows us to lift process discovery to the streaming domain.Comment: Accepted for publication in "Knowledge and Information Systems; " (Springer: http://link.springer.com/journal/10115

    Internet User Behaviour Model Discovery Process

    Get PDF
    The Academy of Economic Studies has more than 45000 students and about 5000 computers with Internet access which are connected to AES network. Students can access internet on these computers through a proxy server which stores information about the way the Internet is accessed. In this paper, we describe the process of discovering internet user behavior models by analyzing proxy server raw data and we emphasize the importance of such models for the e-learning environment.Internet, User Behavior, e-Learning

    Learning Hybrid Process Models From Events: Process Discovery Without Faking Confidence

    Full text link
    Process discovery techniques return process models that are either formal (precisely describing the possible behaviors) or informal (merely a "picture" not allowing for any form of formal reasoning). Formal models are able to classify traces (i.e., sequences of events) as fitting or non-fitting. Most process mining approaches described in the literature produce such models. This is in stark contrast with the over 25 available commercial process mining tools that only discover informal process models that remain deliberately vague on the precise set of possible traces. There are two main reasons why vendors resort to such models: scalability and simplicity. In this paper, we propose to combine the best of both worlds: discovering hybrid process models that have formal and informal elements. As a proof of concept we present a discovery technique based on hybrid Petri nets. These models allow for formal reasoning, but also reveal information that cannot be captured in mainstream formal models. A novel discovery algorithm returning hybrid Petri nets has been implemented in ProM and has been applied to several real-life event logs. The results clearly demonstrate the advantages of remaining "vague" when there is not enough "evidence" in the data or standard modeling constructs do not "fit". Moreover, the approach is scalable enough to be incorporated in industrial-strength process mining tools.Comment: 25 pages, 12 figure

    Semantic discovery and reuse of business process patterns

    Get PDF
    Patterns currently play an important role in modern information systems (IS) development and their use has mainly been restricted to the design and implementation phases of the development lifecycle. Given the increasing significance of business modelling in IS development, patterns have the potential of providing a viable solution for promoting reusability of recurrent generalized models in the very early stages of development. As a statement of research-in-progress this paper focuses on business process patterns and proposes an initial methodological framework for the discovery and reuse of business process patterns within the IS development lifecycle. The framework borrows ideas from the domain engineering literature and proposes the use of semantics to drive both the discovery of patterns as well as their reuse

    Log Skeletons: A Classification Approach to Process Discovery

    Get PDF
    To test the effectiveness of process discovery algorithms, a Process Discovery Contest (PDC) has been set up. This PDC uses a classification approach to measure this effectiveness: The better the discovered model can classify whether or not a new trace conforms to the event log, the better the discovery algorithm is supposed to be. Unfortunately, even the state-of-the-art fully-automated discovery algorithms score poorly on this classification. Even the best of these algorithms, the Inductive Miner, scored only 147 correct classified traces out of 200 traces on the PDC of 2017. This paper introduces the rule-based log skeleton model, which is closely related to the Declare constraint model, together with a way to classify traces using this model. This classification using log skeletons is shown to score better on the PDC of 2017 than state-of-the-art discovery algorithms: 194 out of 200. As a result, one can argue that the fully-automated algorithm to construct (or: discover) a log skeleton from an event log outperforms existing state-of-the-art fully-automated discovery algorithms.Comment: 16 pages with 9 figures, followed by an appendix of 14 pages with 17 figure
    corecore