3 research outputs found

    Privacy Leaks through Data Hijacking Attack on Mobile Systems

    Full text link
    To persistently eavesdrop on the mobile devices, attackers may obtain the elevated privilege and inject malicious modules into the user devices. Unfortunately, the attackers may not be able to obtain the privilege for a long period of time since the exploitable vulnerabilities may be fixed or the malware may be removed. In this paper, we propose a new data hijacking attack for the mobile apps. By employing the proposed method, the attackers are only required to obtain the root privilege of the user devices once, and they can persistently eavesdrop without any change to the original device. Specifically, we design a new approach to construct a shadow system by hijacking user data files. In the shadow system, attackers possess the identical abilities to the victims. For instance, if a victim has logged into the email app, the attacker can also access the email server in the shadow system without authentication in a long period of time. Without reauthentication of the app, it is difficult for victims to notice the intrusion since the whole eavesdropping is performed on other devices (rather than the user devices). In our experiments, we evaluate the effectiveness of the proposed attack and the result demonstrates that even the Android apps released by the top developers cannot resist this attack. Finally, we discuss some approaches to defend the proposed attack

    Machine Learning and Security of Non-Executable Files

    Get PDF
    Computer malware is a well-known threat in security which, despite the enormous time and effort invested in fighting it, is today more prevalent than ever. Recent years have brought a surge in one particular type: malware embedded in non-executable file formats, e.g., PDF, SWF and various office file formats. The result has been a massive number of infections, owed primarily to the trust that ordinary computer users have in these file formats. In addition, their feature-richness and implementation complexity have created enormous attack surfaces in widely deployed client software, resulting in regular discoveries of new vulnerabilities. The traditional approach to malware detection – signature matching, heuristics and behavioral profiling – has from its inception been a labor-intensive manual task, always lagging one step behind the attacker. With the exponential growth of computers and networks, malware has become more diverse, wide-spread and adaptive than ever, scaling much faster than the available talent pool of human malware analysts. An automated and scalable approach is needed to fill the gap between automated malware adaptation and manual malware detection, and machine learning is emerging as a viable solution. Its branch called adversarial machine learning studies the security of machine learning algorithms and the special conditions that arise when machine learning is applied for security. This thesis is a study of adversarial machine learning in the context of static detection of malware in non-executable file formats. It evaluates the effectiveness, efficiency and security of machine learning applications in this context. To this end, it introduces 3 data-driven detection methods developed using very large, high quality datasets. PJScan detects malicious PDF files based on lexical properties of embedded JavaScript code and is the fastest method published to date. SL2013 extends its coverage to all PDF files, regardless of JavaScript presence, by analyzing the hierarchical structure of PDF logical building blocks and demonstrates excellent performance in a novel long-term realistic experiment. Finally, Hidost generalizes the hierarchical-structure-based feature set to become the first machine-learning-based malware detector operating on multiple file formats. In a comprehensive experimental evaluation on PDF and SWF, it outperforms other academic methods and commercial antivirus systems in detection effectiveness. Furthermore, the thesis presents a framework for security evaluation of machine learning classifiers in a case study performed on an independent PDF malware detector. The results show that the ability to manipulate a part of the classifier’s feature set allows a malicious adversary to disguise malware so that it appears benign to the classifier with a high success rate. The presented methods are released as open-source software.Schadsoftware ist eine gut bekannte Sicherheitsbedrohung. Trotz der enormen Zeit und des Aufwands die investiert werden, um sie zu beseitigen, ist sie heute weiter verbreitet als je zuvor. In den letzten Jahren kam es zu einem starken Anstieg von Schadsoftware, welche in nicht-ausführbaren Dateiformaten, wie PDF, SWF und diversen Office-Formaten, eingebettet ist. Die Folge war eine massive Anzahl von Infektionen, ermöglicht durch das Vertrauen, das normale Rechnerbenutzer in diese Dateiformate haben. Außerdem hat die Komplexität und Vielseitigkeit dieser Dateiformate große Angriffsflächen in weitverbreiteter Klient-Software verursacht, und neue Sicherheitslücken werden regelmäßig entdeckt. Der traditionelle Ansatz zur Erkennung von Schadsoftware – Mustererkennung, Heuristiken und Verhaltensanalyse – war vom Anfang an eine äußerst mühevolle Handarbeit, immer einen Schritt hinter den Angreifern zurück. Mit dem exponentiellen Wachstum von Rechenleistung und Netzwerkgeschwindigkeit ist Schadsoftware diverser, zahlreicher und schneller-anpassend geworden als je zuvor, doch die Verfügbarkeit von menschlichen Schadsoftware-Analysten kann nicht so schnell skalieren. Ein automatischer und skalierbarer Ansatz ist gefragt, und maschinelles Lernen tritt als eine brauchbare Lösung hervor. Ein Bereich davon, Adversarial Machine Learning, untersucht die Sicherheit von maschinellen Lernverfahren und die besonderen Verhältnisse, die bei der Anwendung von machinellem Lernen für Sicherheit entstehen. Diese Arbeit ist eine Studie von Adversarial Machine Learning im Kontext statischer Schadsoftware-Erkennung in nicht-ausführbaren Dateiformaten. Sie evaluiert die Wirksamkeit, Leistungsfähigkeit und Sicherheit von maschinellem Lernen in diesem Kontext. Zu diesem Zweck stellt sie 3 datengesteuerte Erkennungsmethoden vor, die alle auf sehr großen und diversen Datensätzen entwickelt wurden. PJScan erkennt bösartige PDF-Dateien anhand lexikalischer Eigenschaften von eingebettetem JavaScript-Code und ist die schnellste bisher veröffentliche Methode. SL2013 erweitert die Erkennung auf alle PDF-Dateien, unabhängig davon, ob sie JavaScript enthalten, indem es die hierarchische Struktur von logischen PDF-Bausteinen analysiert. Es zeigt hervorragende Leistung in einem neuen, langfristigen und realistischen Experiment. Schließlich generalisiert Hidost den auf hierarchischen Strukturen basierten Merkmalsraum und wurde zum ersten auf maschinellem Lernen basierten Schadsoftware-Erkennungssystem, das auf mehreren Dateiformaten anwendbar ist. In einer umfassenden experimentellen Evaulierung auf PDF- und SWF-Formaten schlägt es andere akademische Methoden und kommerzielle Antiviren-Lösungen bezüglich Erkennungswirksamkeit. Überdies stellt diese Doktorarbeit ein Framework für Sicherheits-Evaluierung von auf machinellem Lernen basierten Klassifikatoren vor und wendet es in einer Fallstudie auf eine unabhängige akademische Schadsoftware-Erkennungsmethode an. Die Ergebnisse zeigen, dass die Fähigkeit, nur einen Teil von Features, die ein Klasifikator verwendet, zu manipulieren, einem Angreifer ermöglicht, Schadsoftware in Dateien so einzubetten, dass sie von der Erkennungsmethode mit hoher Erfolgsrate als gutartig fehlklassifiziert wird. Die vorgestellten Methoden wurden als Open-Source-Software veröffentlicht

    Resilient and Scalable Android Malware Fingerprinting and Detection

    Get PDF
    Malicious software (Malware) proliferation reaches hundreds of thousands daily. The manual analysis of such a large volume of malware is daunting and time-consuming. The diversity of targeted systems in terms of architecture and platforms compounds the challenges of Android malware detection and malware in general. This highlights the need to design and implement new scalable and robust methods, techniques, and tools to detect Android malware. In this thesis, we develop a malware fingerprinting framework to cover accurate Android malware detection and family attribution. In this context, we emphasize the following: (i) the scalability over a large malware corpus; (ii) the resiliency to common obfuscation techniques; (iii) the portability over different platforms and architectures. In the context of bulk and offline detection on the laboratory/vendor level: First, we propose an approximate fingerprinting technique for Android packaging that captures the underlying static structure of the Android apps. We also propose a malware clustering framework on top of this fingerprinting technique to perform unsupervised malware detection and grouping by building and partitioning a similarity network of malicious apps. Second, we propose an approximate fingerprinting technique for Android malware's behavior reports generated using dynamic analyses leveraging natural language processing techniques. Based on this fingerprinting technique, we propose a portable malware detection and family threat attribution framework employing supervised machine learning techniques. Third, we design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. We leverage graph analysis techniques to generate relevant, actionable, and granular intelligence that can be used to identify the threat effects induced by malicious Internet activity associated to Android malicious apps. In the context of the single app and online detection on the mobile device level, we further propose the following: Fourth, we design a portable and effective Android malware detection system that is suitable for deployment on mobile and resource constrained devices, using machine learning classification on raw method call sequences. Fifth, we elaborate a framework for Android malware detection that is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques. We also evaluate the portability of the proposed techniques and methods beyond Android platform malware, as follows: Sixth, we leverage the previously elaborated techniques to build a framework for cross-platform ransomware fingerprinting relying on raw hybrid features in conjunction with advanced deep learning techniques
    corecore