7,179 research outputs found

    Challenges and opportunities of context-aware information access

    Get PDF
    Ubiquitous computing environments embedding a wide range of pervasive computing technologies provide a challenging and exciting new domain for information access. Individuals working in these environments are increasingly permanently connected to rich information resources. An appealing opportunity of these environments is the potential to deliver useful information to individuals either from their previous information experiences or external sources. This information should enrich their life experiences or make them more effective in their endeavours. Information access in ubiquitous computing environments can be made "context-aware" by exploiting the wide range context data available describing the environment, the searcher and the information itself. Realizing such a vision of reliable, timely and appropriate identification and delivery of information in this way poses numerous challenges. A central theme in achieving context-aware information access is the combination of information retrieval with multiple dimensions of available context data. Potential context data sources, include the user's current task, inputs from environmental and biometric sensors, associated with the user's current context, previous contexts, and document context, which can be exploited using a variety of technologies to create new and exciting possibilities for information access

    Wearable Computing for Health and Fitness: Exploring the Relationship between Data and Human Behaviour

    Get PDF
    Health and fitness wearable technology has recently advanced, making it easier for an individual to monitor their behaviours. Previously self generated data interacts with the user to motivate positive behaviour change, but issues arise when relating this to long term mention of wearable devices. Previous studies within this area are discussed. We also consider a new approach where data is used to support instead of motivate, through monitoring and logging to encourage reflection. Based on issues highlighted, we then make recommendations on the direction in which future work could be most beneficial

    A Model for Using Physiological Conditions for Proactive Tourist Recommendations

    Full text link
    Mobile proactive tourist recommender systems can support tourists by recommending the best choice depending on different contexts related to herself and the environment. In this paper, we propose to utilize wearable sensors to gather health information about a tourist and use them for recommending tourist activities. We discuss a range of wearable devices, sensors to infer physiological conditions of the users, and exemplify the feasibility using a popular self-quantification mobile app. Our main contribution then comprises a data model to derive relations between the parameters measured by the wearable sensors, such as heart rate, body temperature, blood pressure, and use them to infer the physiological condition of a user. This model can then be used to derive classes of tourist activities that determine which items should be recommended

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare
    corecore