698 research outputs found

    FPSA: A Full System Stack Solution for Reconfigurable ReRAM-based NN Accelerator Architecture

    Full text link
    Neural Network (NN) accelerators with emerging ReRAM (resistive random access memory) technologies have been investigated as one of the promising solutions to address the \textit{memory wall} challenge, due to the unique capability of \textit{processing-in-memory} within ReRAM-crossbar-based processing elements (PEs). However, the high efficiency and high density advantages of ReRAM have not been fully utilized due to the huge communication demands among PEs and the overhead of peripheral circuits. In this paper, we propose a full system stack solution, composed of a reconfigurable architecture design, Field Programmable Synapse Array (FPSA) and its software system including neural synthesizer, temporal-to-spatial mapper, and placement & routing. We highly leverage the software system to make the hardware design compact and efficient. To satisfy the high-performance communication demand, we optimize it with a reconfigurable routing architecture and the placement & routing tool. To improve the computational density, we greatly simplify the PE circuit with the spiking schema and then adopt neural synthesizer to enable the high density computation-resources to support different kinds of NN operations. In addition, we provide spiking memory blocks (SMBs) and configurable logic blocks (CLBs) in hardware and leverage the temporal-to-spatial mapper to utilize them to balance the storage and computation requirements of NN. Owing to the end-to-end software system, we can efficiently deploy existing deep neural networks to FPSA. Evaluations show that, compared to one of state-of-the-art ReRAM-based NN accelerators, PRIME, the computational density of FPSA improves by 31x; for representative NNs, its inference performance can achieve up to 1000x speedup.Comment: Accepted by ASPLOS 201

    Challenges and Opportunities in Near-Threshold DNN Accelerators around Timing Errors

    Get PDF
    AI evolution is accelerating and Deep Neural Network (DNN) inference accelerators are at the forefront of ad hoc architectures that are evolving to support the immense throughput required for AI computation. However, much more energy efficient design paradigms are inevitable to realize the complete potential of AI evolution and curtail energy consumption. The Near-Threshold Computing (NTC) design paradigm can serve as the best candidate for providing the required energy efficiency. However, NTC operation is plagued with ample performance and reliability concerns arising from the timing errors. In this paper, we dive deep into DNN architecture to uncover some unique challenges and opportunities for operation in the NTC paradigm. By performing rigorous simulations in TPU systolic array, we reveal the severity of timing errors and its impact on inference accuracy at NTC. We analyze various attributes—such as data–delay relationship, delay disparity within arithmetic units, utilization pattern, hardware homogeneity, workload characteristics—and uncover unique localized and global techniques to deal with the timing errors in NTC

    PEANUT: A Human-AI Collaborative Tool for Annotating Audio-Visual Data

    Full text link
    Audio-visual learning seeks to enhance the computer's multi-modal perception leveraging the correlation between the auditory and visual modalities. Despite their many useful downstream tasks, such as video retrieval, AR/VR, and accessibility, the performance and adoption of existing audio-visual models have been impeded by the availability of high-quality datasets. Annotating audio-visual datasets is laborious, expensive, and time-consuming. To address this challenge, we designed and developed an efficient audio-visual annotation tool called Peanut. Peanut's human-AI collaborative pipeline separates the multi-modal task into two single-modal tasks, and utilizes state-of-the-art object detection and sound-tagging models to reduce the annotators' effort to process each frame and the number of manually-annotated frames needed. A within-subject user study with 20 participants found that Peanut can significantly accelerate the audio-visual data annotation process while maintaining high annotation accuracy.Comment: 18 pages, published in UIST'2

    Scramble Suit: A Profile Differentiation Countermeasure to Prevent Template Attacks

    Get PDF
    Ensuring protection against side channel attacks is a crucial requirement in the design of modern secure embedded systems. Profiled side channel attacks, the class to which template attacks and machine learning attacks belong, derive a model of the side channel behavior of a device identical to the target one, and exploit the said model to extract the key from the target, under the hypothesis that the side channel behaviors of the two devices match. We propose an architectural countermeasure against cross-device profiled attacks which differentiates the side-channel behavior of different instances of the same hardware design, preventing the reuse of a model derived on a device other than the target one. In particular, we describe an instance of our solution providing a protected hardware implementation of the AES block cipher and experimentally validate its resistance against both Bayesian templates and machine learning approaches based on support vector machines also considering different state of the art feature reduction techniques to increase the effectiveness of the profiled attacks. Results show that our countermeasure foils the key retrieval attempts via profiled attacks ensuring a key derivation accuracy equivalent to a random guess

    Using Efficient Path Profiling to Optimize Memory Consumption of On-Chip Debugging for High-Level Synthesis

    Get PDF
    High-Level Synthesis (HLS) for FPGAs is attracting popularity and is increasingly used to handle complex systems with multiple integrated components. To increase performance and efficiency, HLS flows now adopt several advanced optimization techniques. Aggressive optimizations and system level integration can cause the introduction of bugs that are only observable on-chip. Debugging support for circuits generated with HLS is receiving a considerable attention. Among the data that can be collected on chip for debugging, one of the most important is the state of the Finite State Machines (FSM) controlling the components of the circuit. However, this usually requires a large amount of memory to trace the behavior during the execution. This work proposes an approach that takes advantage of the HLS information and of the structure of the FSM to compress control flow traces and to integrate optimized components for on-chip debugging. The generated checkers analyze the FSM execution on-fly, automatically notifying when a bug is detected, localizing it and providing data about its cause. The traces are compressed using a software profiling technique, called Efficient Path Profiling (EPP), adapted for the debugging of hardware accelerators generated with HLS. With this technique, the size of the memory used to store control flow traces can be reduced up to 2 orders of magnitude, compared to state-of-the-art

    Understanding Timing Error Characteristics From Overclocked Systolic Multiply–Accumulate Arrays in FPGAs

    Get PDF
    Artificial Intelligence (AI) hardware accelerators have seen tremendous developments in recent years due to the rapid growth of AI in multiple fields. Many such accelerators comprise a Systolic Multiply–Accumulate Array (SMA) as its computational brain. In this paper, we investigate the faulty output characterization of an SMA in a real silicon FPGA board. Experiments were run on a single Zybo Z7-20 board to control for process variation at nominal voltage and in small batches to control for temperature. The FPGA is rated up to 800 MHz in the data sheet due to the max frequency of the PLL, but the design is written using Verilog for the FPGA and C++ for the processor and synthesized with a chosen constraint of a 125 MHz clock. We then operate the system at a frequency range of 125 MHz to 450 MHz for the FPGA and the nominal 667 MHz for the processor core to produce timing errors in the FPGA without affecting the processor. Our extensive experimental platform with a hardware–software ecosystem provides a methodological pathway that reveals fascinating characteristics of SMA behavior under an overclocked environment. While one may intuitively expect that timing errors resulting from overclocked hardware may produce a wide variation in output values, our post-silicon evaluation reveals a lack of variation in erroneous output values. We found an intriguing pattern where error output values are stable for a given input across a range of operating frequencies far exceeding the rated frequency of the FPGA
    • …
    corecore