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Abstract—Ensuring protection against side channel attacks is
a crucial requirement in the design of modern secure embedded
systems. Profiled side channel attacks, the class to which template
attacks and machine learning attacks belong, derive a model of
the side channel behavior of a device identical to the target one,
and exploit the said model to extract the key from the target,
under the hypothesis that the side channel behaviors of the two de-
vices match. We propose an architectural countermeasure against
cross-device profiled attacks which differentiates the side-channel
behavior of different instances of the same hardware design,
preventing the reuse of a model derived on a device other than the
target one. In particular, we describe an instance of our solution
providing a protected hardware implementation of the AES block
cipher and experimentally validate its resistance against both
Bayesian templates and machine learning approaches based on
support vector machines also considering different state of the
art feature reduction techniques to increase the effectiveness of
the profiled attacks. Results show that our countermeasure foils
the key retrieval attempts via profiled attacks ensuring a key
derivation accuracy equivalent to a random guess.

Index Terms—Embedded Systems Security, Side Channel At-
tacks Countermeasures, Profiled Attacks, Applied Cryptography

I. INTRODUCTION

MODERN embedded systems are pervasively deployed
in our living environment, and they are increasingly in

charge of performing sensitive tasks such as environmental
parameter monitoring and mechanical actuation. In particular,
the steady rise of the number of interconnected computing
devices deployed in every aspect of human activities, commonly
known as the Internet of Things (IoT), calls for a particular
attention to their security requirements. Indeed, in the typical
IoT scenario, such embedded computing systems are required
to meet both stringent energy envelopes, due to their untethered
functioning, and sound security guarantees, to avoid potential
damage to the physical systems they may monitor or actuate [1].
Such requirements are typically fulfilled with the use of
effective and efficient cryptographic primitives, implemented
as either software libraries or dedicated hardware accelerators.

One of the crucial aspects of providing security guarantees
in the IoT scenario is the possibility for an attacker to seize and
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tamper with the device, due to its embedded nature and field
deployment. As a consequence, Side Channel Attacks (SCAs)
have become one of the prime security threats to modern IoT
devices, as they are applicable even in cases where correct and
standard abiding implementations of cryptographic primitives
are being used to provide the required security guarantees.

SCAs exploit the intrinsic link between the data being processed
by a digital computing platform and one or more environmental
parameters of the platform itself, such as the power consump-
tion, Electro-Magnetic (EM) radiations or computing time [2]–
[7]. Subsequently, given the measurements, the attacker tries
to deduce the correct value of the secret key by modeling a
small portion of the computation (e.g., a single instruction on
a micro-controller), which in turn depends only on a small
portion of the secret key. The assumption that the behavior of
a small portion of the computing logic depends only on a few
secret key bits allows the attacker to derive a model of the
computing logic behavior for each possible value assumed by
the key bits. The said models are compared with the actual
measurements revealing the best fitting one, and thus the actual
secret key value. Since the side channel measurements are
affected by both random and systematic noise, the goodness
of fit of a model to the actual device behavior is performed
employing statistical tests, over a significant amount of side
channel samples.

Countermeasures against SCAs rely on lowering the signal-
to-noise ratio, a technique known as hiding [3], [8], [9],
on computing the cryptographic algorithm in a semantically
equivalent fashion, while randomizing the individual portions of
the computation itself, a technique known as masking [3], [10],
or by changing continuously the code employed to perform the
sensitive computation, a technique known as morphing [11]–
[15]. A further approach relies on trying to reduce the imbalance
between two instances of the computing device, which act
on Boolean complementary data, and are thus expected to
exhibit an overall consumption which is constant [16]. All
these approaches raise the required amount of measurements
to be taken to obtain a sound statistical comparison among the
key-dependent models, up to the point where either collecting
the measurements, or processing the collected data exceeds
practical feasibility. Indeed, it is not uncommon to evaluate the
robustness of a SCA countermeasure in terms of the amount
of Measurements To Disclose the key (MTD) [17], [18]. A
crucial point in applying SCA countermeasures to IoT devices
is their required overhead in terms of energy consumption and
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execution time, which is common to be one to two orders
of magnitude larger than the computation of an unprotected
cipher [10]. To this end, a viable approach to prevent SCAs
from succeeding is to employ a persistent memory counter
in the device, which limits the maximum amount of cipher
executions to one which is both compatible with the device
lifetime and lower than the MTDs provided by hiding or
masking countermeasures [19].

While this strategy is really effective in preventing common
SCAs, a set of strategies, known as profiled attacks, was
devised with the purpose of attacking a target with a minimal
amount of measurements, down to a single one in most cases.
Since the pioneering work on the Bayesian Template Attack
(a.k.a. Template Attack) [19], profiled attacks have proved to be
successful in attacking embedded devices and currently have
no countermeasure explicitly aimed at foiling them. Profiled
attacks involve collecting side channel measurements from
another instance of the device under attack, on which the
attacker may set the secret key value at his will, and perform
as many measurements as needed (e.g., a blank smart card
on which the private key can be set at the attacker’s will).
This allows him to derive a side channel behavior, or profile,
which is a perfect match of the device under attack for every
value which can be taken by the few secret key bits which are
being retrieved at each attack. The approach proposed in [19]
was extended and improved employing well-known statistical
classifiers [20]–[22], which perform the same role of the
maximum likelihood classification step done in template attacks,
and provide an alternative way to obtain robustness against
measurement noise in the key recovery phase [22]. Template
attacks are indeed able to reach the maximum information
theoretical effectiveness in deriving a secret key from a side
channel behavior [19], [23]–[25], and are able in principle to
defeat any of the countermeasures devised for non-profiled
attacks, such as masking and hiding, provided that enough
measurements are collected [26]. To this end, [22], [27] report
that countermeasures effective against non-profiled side channel
attacks are not sufficient to ward off against profiled ones. This
has lead to practical attacks against real world devices [28],
despite some may have very tight limitations on the number
of collectible measurements [29]. A fundamental assumption
of profiled attacks is that the side channel behavior derived
on an instance of a device provides a good, ideally perfect,
fit for the behavior of another instance of the same device.
While this is correct in principle, process variability was shown
to be of some hindrance to the creation of a correct profile
from a single instance of a device [30], [31], although the
authors of [30], [31] show that some tolerance to it can
be achieved computing a synthetic device profile combining
the measurements obtained from multiple instances of the
same device. Finally, we note that, to the best of the authors’
knowledge, no SCA countermeasure tailored explicitly against
profiled attack exists.

Contributions. In this work we propose Scramble Suit, a
countermeasure against profiled-SCAs employing either the
power consumption or EM emission as the information leaking
side channel. Our approach disrupts the possibility of reusing

a profile acquired on a given device on a different one, whilst
it does not prevent the acquisition of the profile itself. We
propose an architecture-level approach which differentiates
the side channel profiles of each single chip instance of the
given design, without resorting to direct manipulation of low
level design features or requiring a specific electronic design
automation (EDA) toolchain. To this end, in the computation
of the cryptographic primitive we employ data obtained as
the response of a Physically Unclonable Function (PUF) to
an input challenge, in such a way that it is not possible to
separate its contribution from the side channel profile. Such
an approach augments the natural effect of process variability
to the point that reusing a side channel profile is not feasible,
while preserving the benefits of the low variability coming from
an optimal design. As a case study we describe a protected
hardware module for the Advanced Encryption Standard (AES)
cipher, and we practically validate its robustness instantiating
the design on an FPGA platform, attempting to perform
profiled side channel attacks against it with both the classic
template attack approach and the support vector machine
(SVM) classifier. In both cases, the cross-device prediction
accuracy of each single-bit key value is reduced to 50% in the
AES implementation protected with Scramble Suit. The results
substantiate the fact that the resistance to profiled attacks is
not dependent on a specific choice of the attack strategy.

We note that, since the Scramble Suit countermeasure acts
preventing only the reuse of the information concerning the
side channel profile of a device, non-profiled side channel
attacks will still be possible on a device protected with
the proposed countermeasure alone. To cope with this issue,
Scramble Suit can be naturally combined with any of the
countermeasures effective against non-profiled attacks (e.g.,
the ones in [32]). Indeed, such a countermeasure combination
fits the fact that, if no countermeasures are present, a non-
profiled is the simplest approach. Therefore, if protection
against template attacks is taken into consideration, all the
other more exploitable threats should have been dealt with
already. In this work we do not tackle the topic of choosing a
specific PUF architecture: Scramble Suit can be instantiated
with any sound PUF instance [33]–[35].

The remainder of this work is organized as follows: Section II
provides an overview on profiled attacks and summarizes the
basic concepts on PUFs. Section III presents the Scramble
Suit approach, detailing its working principle, and describing a
protected AES implementation. Section IV reports the results
of our experimental validation and Section V summarizes our
conclusions.

II. BACKGROUND

In this section we provide an overview on the techniques
to lead a profiled side channel attack, and a summary of the
fundamental properties of PUFs.

A. Profiled Side Channel Attacks

Profiled SCAs use the information unintentionally transmit-
ted on side channels by digital computing devices proceeding
in two subsequent phases: a profiling phase and an exploitation



TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, MONTH YEAR 3

phase. Their most significant advantage lies on the ability
to recover the cryptographic secret key employed by the
targeted cryptographic primitive implementation with a few
(in some cases only a single) side channel measurement
from the executing device, overcoming implementations or
countermeasures which restrict the number of measurements
that can be acquired.

The profiling phase of this cross-device attack may be
interpreted as an instance of a supervised learning problem,
where the ground truth required to train a classifier is obtained
from a device fully controlled by the attacker, so that the side
channel behavior can be matched to a known key value. In
particular, in the profiling phase the attacker derives an accurate
model of the side channel information leakage (e.g., via power
consumption, or EM radiation) employing a different instance
of the device he wants to retrieve the key from. The instance
employed by the attacker differs from the target one only for
the possibility of controlling the value of the employed key [36],
[37]. We note that such an instance is legitimately obtained
and is not an unauthorized or modified clone of the original
chip design. The model learned in the training phase is used,
in the exploitation phase, to obtain the unknown key of the
target device via classification of a few measurements from it.

Profiled SCAs share with their classic counterpart the divide-
et-impera approach which retrieves the secret key one small
portion at a time. In this respect, considering the key as split
up into bit- or byte-sized parts, the profiling phase builds a set
of side channel behavior profiles for each key portion. Each
one of these sets contains the models for the behavior of the
device for any possible value that the aforementioned small
key portion may take.

Given the assumption that the profile is correctly derived, a
profiled-SCA can be viewed as the most effective attack in an
information theoretic sense [19]. As a consequence, the use of
the profiled attack methodology was also suggested to evaluate
the side channel resistance of a cryptographic implementation
in a worst case scenario [30]. However, the extent to which a
leakage model that is carefully obtained for one device can be
used to lead successful attacks against another instance of the
same device may be diminished by either outdated profiling
data [38] or process variability issues due to technology scaling
effects. In the former case, [38] showed that the problem can
be effectively managed assuming the measurements used in the
exploitation phase as being both desynchronized and differently
scaled in amplitude with respect to the data used in the profiling
phase. In the latter case, [31] showed that with a 65nm 8-bit
datapath AES implementation the process variability effects
can be compensated building a leakage model employing the
profiling data of multiple chips. This implies that the distance
between the profiles of the same key value on two different
chips is smaller than the distance between the profiles of two
different key value on the same chip. If that is not the case,
i.e., the behaviors of a device under two different values of a
key portion are closer than the ones of two device instances
under the same value of the key portion, the side channel
profiles obtained from the measurements of a multiple number
of devices will not be able to perform a successful key recovery
in the exploitation phase of the attack. Indeed, in the latter

case, any strategy aimed at classifying the behavior of a device
with a model taken with multiple instances would lack the
selectivity required to tell apart the key dependent behaviors.

In this work, we will validate the effectiveness of our
countermeasure against both the classical template attacks
(TAs), as first proposed in [19], and an instance of the more
recent approaches performing profiled-SCAs using machine
learning techniques. Indeed, machine learning techniques have
been employed to perform profiled attacks, building the model
that best describes the behavior of the targeted device in a non-
parametric and data-driven way, thus removing any assumption
on the statistical distribution of the information leakage. In
particular, following the pioneering work of Lerman et al. [39],
the supervised learning approach employed by Support Vector
Machines (SVMs) has proved to be an interesting alternative
to TAs [20]–[22], and is thus employed as a second benchmark
of the robustness of our countermeasure. Finally, in template
attacks as well as in machine learning profiled SCAs, the large
number of samples in a sequence of side channel measurement
(a.k.a. trace) may prove a hindrance to the effectiveness of the
attacks due to numerical instability and the high amount of
information required to estimate the statistical distribution of the
behaviors of the device. To this end, feature selection techniques
have been successfully applied, increasing significantly the
effectiveness of profiled-SCAs. In the following we provide a
summary of the background on template attacks, SVM-based
profiled attacks and feature selection techniques to enhance
their effectiveness.
Template Attacks. Assuming a cryptographic primitive im-
plementation fed with an l-bit key k (having a value chosen
by the attacker) and a number n�1 of input plaintexts, the
sequence of side channel measurements obtained from the
running device, for each single-bit key value ki, 1≤i≤l, over
a time interval of length s, is commonly named as trace and
denoted as T̂ (ki)={T̂j(t) | 1≤t≤s}, 1≤j≤n.

Template attacks assume that each side channel measurement
is affected by additive Gaussian noise, and model each trace as a
random vector variable T (ki) following a multivariate Gaussian
distribution with mean vector µ(ki), and covariance matrix
Σ(ki), i.e.: T (ki)∼N (µ(ki),Σ(ki)), with probability density
function

Pr(T (ki) = x) =
exp
(
− 1

2
(x− µ(ki))(Σ(ki))−1(x− µ(ki))tr

)√
(2π)ndet(Σ(ki))

.

In the profiling phase, the attacker obtains a sample estimate
of the mean vector µ̂(ki) and the covariance matrix Σ̂(ki),
collecting sets of measurements for each value of the key bits
ki, 1≤i≤l. The attacker thus derives the sample distributions
of variables T (ki), for each possible value of ki: if the side
channel profile associated to the single i-th bit of the secret
key is considered, the attacker will derive two distributions
for T (ki) by setting a value for ki (i.e., ki=0 and ki=1) and
collecting the measurements from the controlled device.

In the exploitation phase, a trace T̂={T̂ (t) | 1≤t≤s} is
acquired from the device under attack, for which the key
value is unknown, employing the same measurements con-
ditions of the profiling phase. The likelihood of T̂ being an
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instance (i.e., sample) of one of the random vector variables
T (ki)={T (t) | 1≤t≤s}, is evaluated as the a-posteriori proba-
bility:

Pr(ki | T̂ ) =
Pr(T (ki) = T̂ ) · Pr(ki)∑l

h=1 Pr(T (kh) = T̂ ) · Pr(kh)

where Pr(ki) is the a-priori probability associated to the
specific key-bit value ki that does not consider T̂ . Typically,
all key values are equally likely and hence Pr(ki)=

1
2 . For

each key-bit 1≤i≤l, the value ki (i.e., either ki=0 or ki=1)
which maximizes the aforementioned a-posteriori probability
is selected as the value of the i-th bit of the secret key
employed by the device under attack. The choice of modeling
the probability density functions of the T (ki) variables as
multivariate Gaussian functions has proven, in practice, to be
a very good approximation of the side channel leakage on
the power consumption channel, although other parametric
distributions can be considered [40].
Support Vector Machines. Machine learning techniques re-
place the assessment of the maximum a-posteriori probabilities
of each key-bit value, Pr(ki | T̂ ), with a classification step able
to guess the correct value of ki. The profiling phase of the
employed machine learning technique makes use of a set of
traces {T̂ (ki)

j }, T̂ (ki)
j ={Tj(t) | 1≤t≤s}, with 1≤j≤n, each of

which labeled as belonging to a group having the i-th bit of the
key equal to zero or one, according to the actual value which
was set in the attacker-controlled device during their gathering.
Our classifier of choice, the SVM, enforces a non-probabilistic
binary linear classifier assigning new (unlabeled) traces to one
of these groups.

To the end of training the classifier, each trace T̂
(ki)
j is

mapped to a point of a multi-dimensional geometric space
with the intent of determining clusters of data and dividing
them into sets separated by clear boundaries. To this aim, a
projection function φ(·) mapping the original data to a space
with higher (or infinite) dimensions is employed to convert
complex boundaries into linear ones. In particular, the vector
parameters w and b of an hyperplane, wtrT+b, that has the
largest distance from the nearest data points of each set, is
computed by formulating the following convex optimization
problem: min 1

2 (wtr ·w), subject to wtrφ(T̂ (ki))+b≥1 if ki=1,
and wtrφ(T̂ (ki))+b≤−1 if ki=0, for all the available traces
T̂ . The traces which are projected onto points closest to the
separating hyperplane are the ones which influence most its
computation and are called support vectors, hence the name
of the classifier. During the exploitation phase, traces collected
from the device under attack are mapped into the same space
and labeled as belonging to one set or the other, based on
which side of the hyperplane they fall.
Feature selection. Most of the computational effort to perform
a profiled-SCA lies in the management of traces with a large
number of samples (s�1): cases where the number of samples
of a trace are in the high hundreds or a few thousands are
not uncommon in practice. In particular, naively discarding
trace samples may cause poor results in terms of accuracy
of the key recovery procedure, while employing too many of
them will likely lead to the introduction of a higher amount of

noise, potentially more than the amount of sensitive leakage
information. A feature selection procedure is usually adopted to
improve the efficiency and effectiveness of the entire procedure.
Such a preprocessing step allows either to select a subset of
the trace samples based on their sensitive leakage information
content, or to filter out redundant and uncorrelated information
present in the original dataset by combining the trace samples
to obtain a smaller set of features. The most effective feature
selection algorithms present in the state-of-the-art include: i)
the selection of trace samples exhibiting maximum variance, ii)
the selection of trace samples corresponding to the maximum
Sum Of Squares of t-difference of means (SOST) [24], and
iii) the linear combination of trace samples by means of the
unsupervised Principal Component Analysis (PCA) [25], [41]
as opposed to its supervised counterpart presented in [42].
While the first two feature selection approaches simply sort the
time instants in a trace according to the goodness of their score,
and consider only the subset of the best scoring ones, PCA
takes a different approach to the feature reduction problem.
Indeed PCA considers the samples of a trace as a set of
interrelated random variables, and aims to reduce their number
while retaining as much as possible the information included
in their variation. This is done by transforming the original
data into a new set of variables, their principal components,
which are mutually uncorrelated, and which are ordered so
that the first few retain most of the variation present in all of
the original data.

B. Physically Unclonable Functions

Alongside common implementations of mathematically
designed cryptographic primitives, a key role in secure circuits
is played by the so called Physically Unclonable Functions
(PUFs). PUFs are a hardware cryptographic primitive which,
presented with a challenge bit-string c out of a set of possible
ones C provides a response r which is expected to be unique
for each device instance. It is thus possible to employ the
response to a challenge as a unique fingerprint of a given device
instance. According to [43], the fundamental characteristics of
a PUF are: i) unclonability, i.e., a PUF instance should not
be reproducible even if the attacker is supplied with all the
design details of an existing one; ii) reliability, i.e., a given PUF
instance should provide always the same response to a given
challenge; iii) unpredictability, i.e., it should not be possible
to guess a response to a given challenge. PUF designs are
traditionally classified into two main categories: the so-called
weak PUFs and the strong PUFs [44]. While a unique formal
definition of a weak PUF is currently not agreed upon by the
community, a widely accepted criterion is to define a weak
PUF as a PUF where the number of admissible challenge-
response pairs is polynomial in the number of elementary
components (e.g., logic gates) composing the PUF [43]. By
contrast, a strong PUF is a PUF where the number of admissible
challenge-response pairs grows exponentially with the number
of its elementary components. In this work, we will focus
on strong PUFs, against which the main attack strategy is
represented by trying to derive via machine learning algorithms
their inner structure, so to be able to clone an instance of them.
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In particular, machine learning attacks on PUFs rely on a
significant amount of challenge-response pairs to estimate the
values of the instance-dependent parameters of the PUF (e.g.,
line propagation delays). Once these parameters are obtained
it is possible to build a circuit equivalent to the modeled PUF,
thus breaking the unclonability property.

Concerning the application of side channel attacks to
PUFs, recent work [45] has shown that it is possible to use
the information coming from side channels to enhance the
effectiveness of machine learning attacks to strong PUFs. In
particular, observing the time required to produce a response
and the power consumption of the PUF in doing so, it is possible
to reduce the number of known challenge-response pair and
attack most state-of-the-art PUFs, provided their inputs and
outputs are known. In [46] the authors analyze from an active
and passive side channel attack standpoint the Controlled PUF
construction [47] relying on an arbiter PUF outputting a single
bit per query, which is stored in a shift register. It is assumed
that an attacker has no direct access to the challenges and
responses. The authors of [46] show that, under the hypotheses
of resetting the PUF and initializing the register for the storage
of the responses to a fixed value at each query, it is possible
to perform side channel attacks to such a design. Pushed by
this avenue for attacks, a significant research effort was put
into the design of PUFs resistant to modeling attacks which
also exploit side channel information. Among the most recent
works, the one proposed by Xi et al [33], reports a design of a
side channel resistant, strong PUF, which was experimentally
validated to be resistant. Such a design of a PUF would fit the
requirements for an ASIC instantiation of the Scramble Suit
countermeasure.

III. THE SCRAMBLE SUIT APPROACH

In this section we describe Scramble Suit, an architecture
level approach against profiled-SCAs. Section III-A provides
a high level overview of Scramble Suit, while an instance
employing an AES-128 implementation as our case study is
discussed in Section III-B.

A. High Level Structure

Counteracting profiled side channel attacks requires to
invalidate one of the basic assumptions which allow them
to succeed: (1) the attacker is able to derive the key-dependent
side channel behavior (e.g., the power consumption profile) of
a device he controls completely and (2) the attacker is able
to reuse the profile of a device to extract information from an
identical one, under the assumption that they share the same
side channel behavior. Given that assumption (1) will always be
fulfilled if an attacker collects enough measurements to obtain
an accurate profile of the device, we focus on invalidating
assumption (2) with Scramble Suit. Indeed, if different instances
of the same device exhibit a substantially different side channel
behavior arising from the processing of inputs and key, it is
not possible for an attacker to employ a profile of a device
he controls to extract information from a different one. Our
countermeasure leverages a strong PUF [48] as a mean to
amplify the effects of the process variability, and materialize

AES AES

K KP

O OP

ciphertext

plaintext key

PUF

Scramble Suit

Figure 1. Conceptual view of Scramble Suit, employing an AES implementation
as an exemplary case study

them onto digital data which are fed to a computing circuit.
However, the computation with the said data should provide
a contribution to the side channel profile of the device which
is not separable from the one of actual cipher computation.
To this end, we propose to employ the data in a duplicated
instance of the cipher itself, which is run in parallel with the one
computing the actual primitive on real data. We note that it is
not possible to substitute the PUF in our design with a generic
True (i.e., physical) Random Number Generator (TRNG) since
the digital data being fed to the computing circuit should be
both uniquely bound to its structure, and reproducible. Indeed,
the latter feature is required to systematically distort the side
channel profile of the device, while TRNG generated inputs
may be removed via averaging the data among different sets of
measurements taken with the same secret key and a randomly
re-generated fake one.

We note that, in case the cryptographic device is employing
a single hard-coded key, it is possible to avoid the need of a
PUF. Indeed, it is possible to generate off-line the value for
the key to be employed by the replica cipher through a strong
key derivation function, e.g., HKDF [49], fed with both the
value of the actual device key and a manufacturer key which
is never embedded into the device itself.

Figure 1 depicts a high level view of the method we
propose to obtain a device dependent side channel behavior
taking as an example a hardware implementation of the AES
block cipher. The cipher key K is fed into a PUF, acting
as a challenge for it, and the PUF response is employed
as the device dependent key KP. Two instances of the AES
cipher are fed with the same plaintext, and either K or KP,
providing a contribution to the overall side channel behavior
which depends both on the computed data and the device
instance via KP. Under the assumption that it is not possible
to collect measurements of each one of the AES instances
present in Scramble Suit separately, either exploiting the spatial
distribution of EM leakage, or distinguishing their execution
in time, the device-dependent side channel behavior of the
resulting protected design will depend on the key value in a
different way for each device instance. The extent of such a
difference is a consequence of two key properties of a strong
PUF [48], [50], namely: (1) unicity, i.e., the property stating
that two different instances of a PUF should output significantly
different responses to the same challenge; (2) uniformity, which
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Figure 2. Data flow diagram of the AES-128 implementation employed as
the baseline in our case study. The implementation at hand performs the
computation of the SUBBYTES (i.e., the application of the function contained
in the look-up table referred as S-Box) on four bytes per clock cycle, while the
SHIFTROWS, MIXCOLUMNS and ADDROUNDKEY primitives are computed
all in a single clock cycle by means of a single combinatorial module, on the
entire state of the cipher

guarantees that small changes in a challenge will cause changes
in the entire response. Such properties are crucial, along the
reliability property (see Section II), i.e., the same PUF instance
should always provide the same response to a given challenge.
Properties (1) and (2) ensure that KP is picked significantly
far apart, in terms of Hamming distance, among different
devices, and that small changes in the user key K will map
to significant changes in KP. The former effect thus ensures
that the added contribution to the side channel profile of the
device is indeed device specific, while the latter ensures that it
impacts significantly on it, even for changes of a small portion
of the user key value. The reliability property ensures that the
value of the device dependent key will be deterministically
derived for each given user key/device instance pair. Thus,
the contribution added to the side channel behavior by the
cipher computation over the device dependent key KP will not
be removed if averaging over multiple measurements of the
execution of the cipher on the same inputs.

We note that the per-device deterministic generation of the
value of KP from K via PUF prevents the attacker from profiling
the side channel for all the possible pair of values of K, KP, since
they will not be generated by the PUF. For instance, taking
the straw-man example of a single-bit K and a corresponding
single bit KP only two of the possible four pairs of values for
(K, KP) will be generated by the PUF on a given device.

In order to be effective, the contribution to the side channel
profile provided by Scramble Suit should be more significant
than the one employed by the classification strategy to correctly
identify the value of the key portion ki. Indeed, if this condition
is not met, applying a profiling technique exploiting multiple
devices to obtain a valid profile as described in [31] becomes
applicable. Such a condition is typically met thanks to the
uniformity of strong PUFs, which makes the value of KP differ
significantly whenever small changes take place in K, in turn
causing the contribution to the side channel to change to a

comparatively large extent. However, if the said condition is
not fulfilled employing a single additional cipher instance, the
side channel contribution of the Scramble Suit countermeasure
may be increased by adding a larger number of replicas of
the primitive to protect. The keys for the aforementioned
replicas may either be generated with a PUF having a different
architecture, or obtained as the cryptographic hash of KP.

We note that machine learning attacks aimed at breaking the
unclonability property of the PUFs, as the one proposed in [45],
cannot be employed against Scramble Suit, since they require
the attacker to be provided with both the side channel data
and the challenge-response pairs of the PUF itself. However,
the challenge-response pairs are not public in Scramble Suit;
indeed the challenges are the secret keys.

B. Architectural Implementation
We now detail the design of a Scramble Suit protected

AES block cipher. The AES block cipher is a 128-bit block
cipher, of which we consider the version employing a 128-
bit key, AES-128 from now on. AES-128 is composed of
nine equal rounds where the cipher state is processed by
four primitives, SUBBYTES, SHIFTROWS, MIXCOLUMNS and
ADDROUNDKEY in the said order, and a final round where
the MIXCOLUMNS primitive is not applied. The 10 rounds
are preceded by a single ADDROUNDKEY performed on the
plaintext itself.

Figure 2 reports the data flow diagram of the implementation
we chose as our baseline for the case study (available in [51]).
The said implementation computes the SUBBYTES primitive on
four bytes of the AES state per cycle, resorting to four separate
look-up tables (LUTs), and thus completing the computation of
SUBBYTES in four cycles. The remaining three primitives (two,
in the case of the last round) are computed by a combinatorial
circuit in a single clock cycle, resulting in a five cycles per
round latency.

In designing the Scramble Suit protected AES we need
to ensure that our architecture meets the two assumptions
of Scramble Suit, i.e., a sound PUF is employed, and the
contribution to the side channel provided by the duplicated
core is not separable via either spatial or temporal features.
Concerning the first assumption, since the design of a sound
PUF is out of scope for this work, we emulate its effects
encrypting the user key K with AES-128 employing a fixed,
device dependent key Kdev and consider the result of the
encryption as our KP. The strong PUF properties are satisfied
by this emulation due to the properties of the AES block
cipher, in particular: the unicity requirement is satisfied thanks
to the resistance of AES-128 to related-key attacks [52], the
uniformity requirement is satisfied thanks to the immunity
of AES to differential cryptanalysis [53], and the reliability
property is met thanks to the deterministic nature of AES-128.
We note that the generation of KP is performed during the setup
phase of the circuit and does not influence the side channel
profile derivation. Such an assumption matches the fact that
the structure of the ideal PUF should not be learned by means
of side channel attacks.

To meet the second Scramble Suit assumption, our design
should ensure that the two instances of the AES are indeed
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Figure 3. Architectural view of the Scramble Suit AES-128, reporting primary
inputs and outputs. The AES-Comb-a and AES-Comb-b modules contain
the combinatorial logic implementing the SHIFTROWS, MIXCOLUMNS and
ADDROUNDKEY primitives, together with a bypass allowing the computation
of the SUBBYTES primitive done by the SBOX module to be propagated to
the state registers

run in perfect parallel, are identical one to the other, and are
placed in such a way to prevent targeted attacks employing high
spatial resolution EM probes [54]. Solving these issues without
resorting to low level circuit design, including handmade
placement and routing was proven to be difficult [54], [55],
as EDA tools aggressively try to optimize the design in the
“place and route” phase. Willing to retain the possibility of
keeping the description of the entire design at register transfer
level (RTL), we propose a design which randomly alternates
the computation of the AES-128 employing K and the one
employing KP on two instances of the AES core. Employing
this strategy allows us to foil attempts at distinguishing the
contribution of one computation from the other, as they will
both be performed an equal amount of times (on average) on
each AES core. This, in turn, foils the attempts at employing
spatial or temporal discrimination techniques. We note that
there is no need to memorize the sequence of random values
driving the choice of the core on which the computation is
performed to be able to decrypt the obtained ciphertext, as it
is identical to the one which is computed by an unprotected
AES implementation.

Performing a trivial implementation of the mentioned strategy
would incur in significant area penalties, due to the requirement
of multiplexing data between the state registers holding the
intermediate values of the computations with both K and
KP and the computation logic, plus the duplication of the
round computation logic itself. We propose an optimized
architecture for the Scramble Suit AES-128 reducing the
amount of duplicated logic, and computing the cipher result in
the same number of clock cycles as the baseline implementation.
We note that the implementative approach we propose on
the AES-128 case study can be applied in a straightforward

fashion to any block cipher implementation. Moreover, it is also
possible to generalize it to asymmetric primitives (encryption,
signature) although it is required to analyze which are the
datapaths in the cipher, to alternate the values belonging to the
two computations.

Figure 3 depicts the architecture of our proposed Scramble
Suit AES-128, while Figure 4 provides its timing diagram for
the computation of the initial ADDROUNDKEY and the first
round of the cipher.

The Scramble Suit AES module has as its primary inputs
the plaintext to be enciphered, the two keys K and KP and
the rngBit signal providing one random bit per AES-128
round. The module outputs the correct ciphertext after the
encryption is complete. The two keys K and KP are expanded by
the KeyMem and KeyMem-P modules, which receive the round
number r and perform the AES KEY SCHEDULE outputting
the r-th round keys (namely, Kr KP

r in the timing diagram
in Figure 4). During the first cycle of the computation, the
plaintext, from now on considered as a quadruple of 32-
bit words 〈P0, P1, P2, P3〉 is duplicated by the Input Mux
module, and stored in the two available state registers State-a
and State-b after performing the initial AddRoundKey. The
position of the device independent state 〈I00 , II1 , I02 , I03 〉 and the
device dependent one 〈D0

0, D
0
1, D

0
2, D

0
3〉 after the 0-th round

only depends on the value of rngBit.
The Scramble Suit AES-128 alternates the computation of

the AES rounds over the two available paths picking the storage
location of the correct value at random between State-a and
State-b at each round. This action, performed by the Value
Mux pair of multiplexers, which employ rngBit as the selector,
reduces the requirement for large muxes on the datapath to
the minimum (a single pair for the states, plus a single pair
for the round keys). Willing to reduce the area required by the
protected datapath, we chose to instantiate a single LUT to
compute the SUBBYTES primitive of the AES cipher (SBOX
module in Figure 3). To avoid the increase in computation
time mandated by the fact that the protected AES needs to
compute the SUBBYTES primitive on twice the amount of data,
we employ a dual-ported LUT to implement it, allowing the
computations on both State-a and State-b simultaneously.

The choice of reducing the number of muxes to the minimum,
while keeping the same latency for the entire encryption has
the potential of causing a semantic mismatch in the computed
values. Indeed, during the computation of the SUBBYTES,
AES-Comb-a and AES-Comb-b will contain a mix of device-
independent and device-dependent values. For instance, during
round 1 (Figure 4: clock cycles 1–4) State-a will change
according to the following transitions:

〈I00 , I01 , I02 , I03 〉 → 〈D1
0, I

0
1 , I

0
2 , I

0
3 〉 → 〈D1

0, D
1
1, I

0
2 , I

0
3 〉 →

→ 〈D1
0, D

1
1, D

1
2, I

0
3 〉 → 〈D1

0, D
1
1, D

1
2, D

1
3〉

Such a behavior still yields a correct computation as the only
value required to compute In+1

i (resp. Dn+1
i ) during the ith

clock cycle of the round computation is Ini (resp. Dn
i ), which

is still being correctly asserted by the proper state register,
for all the possible selections operated by the Value Mux. In
particular, the Scramble Suit architecture ensures that, at the
fifth clock cycle of each round, both the device independent
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Figure 4. Timing diagram of the Scramble Suit AES-128 during the computation of round 0 and round 1, assuming a random sequence on the rngBit signal
equal to 〈0, 1, 0〉. The output signal of a module is labeled using the corresponding module name

state and Kr are muxed to the same combinatorial logic block,
either AES-Comb-a or AES-Comb-b, according to the value of
the rngBit selector, to produce the next device independent
state value. The entire computation is symmetric w.r.t. the
computation path employed to derive the result, and thus fulfills
the assumption of non separability either in time or in space
required for the Scramble Suit countermeasure. The proposed
architecture retains the ability to compute a round in five clock
cycles as the baseline AES core.

IV. EXPERIMENTAL EVALUATION

We report in this section the description of the experimental
setup employed to evaluate both the efficiency and the effective-
ness of the Scramble Suit countermeasure applied to our case-
study AES-128. In particular, we report the results of profiled
attacks conducted both with Bayesian templates and SVMs on
both protected and unprotected instances of the cipher deployed
onto an Field Programmable Gate Array (FPGA) platform.
Furthermore, we report experimental evidence maintaining the
fact that the profiles of two different device instances equipped
with Scramble Suit exhibit significantly different power profiles,
thus preventing device profile reuse.

Experimental setup and efficiency results. We chose as our
validation platform the Sakura-G development board [56],
which is especially designed to allow high accuracy, low
noise side channel measurements. The board is endowed with
two Xilinx Spartan 6 FPGAs: the main one (XC6SLX75-2)
is dedicated to the deployment of the implementation to be
measured, while the other, smaller, one (XC6SLX9-2) can be

employed to provide ancillary signals and control the main
one. The clock is provided by an on-board, 48 MHz, quartz
oscillator fed into the control FPGA and forwarded by it to
the main FPGA, taking care of performing a proper buffering.
We deployed the proposed AES architecture together with a
Universal Asynchronous Receiver Transmitter (UART) module
allowing us to both send the plaintexts and key values to the
protected AES, and retrieve the result computed on the FPGA.
We employed a 64-bit Linear Feedback Shift Register (LFSR)
with a primitive connection polynomial to generate the rngBit
input. We note that, although the LFSR-based Pseudo Random
Number Generator (PRNG) is not cryptographically secure (as
evaluating a secure random number generator is not the focus of
this evaluation) it provides a uniformly distributed sequence of
bits with a repetition period of 264−1, which provides a sound
countermeasure setup from a uniformity of the computation
distribution standpoint. The design was synthesized with Xilinx
ISE Ver. 14.7, performing a balanced area-speed synthesis.

Table I
COMPARISON OF FPGA RESOURCE USAGE BETWEEN A SINGLE

UNPROTECTED AES CORE AND THE SCRAMBLE SUIT ONE (EXCLUDING
THE PUF), SYNTHESIZED FOR A SPARTAN 6 LX75 TARGET FPGA. AREA
RESOURCES REPORT BOTH THE ABSOLUTE RESOURCE FIGURE, AND THE

PERCENTAGE OF THE DEVICE OCCUPIED

Baseline Scramble Suit

Critical Path Slack (STA) 1.72 ns 3.70 ns

LUTs 8700 (18%) 11201 (24%)
FFs 3081 ( 3%) 5464 ( 5%)
BRAM blocks 0 ( 0%) 0 ( 0%)
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Figure 5. SOST scores (a) and variance (b) depicted as a function of the time sample, obtained from the measurements gathered from instance-a (blue)
instance-b (red). The metrics were computed along the entire AES-128 computation (600 samples). All the curves are computed on the 4000 traces
employed as the training set, for each virtual device instance. Both feature selection techniques identify the best time instants picking the 10 ones having the
highest value of the corresponding figure of merit. Samples selected for instance-a are marked with a black circle, while the ones for instance-b are
marked with a black ×

Table I reports the critical path slack according to post place-
and-route Static Timing Analysis (STA) and FPGA resource
utilization of both the baseline design (a single unprotected
AES core) and our protected solution (without considering the
PUF), showing that the Scramble Suit countermeasure requires
only 28% more LUTs and 77% more flip flops, a substantial
saving with respect to a straightforward implementation of
our architecture, which would have implied complete resource
duplication.

We note that neither implementation employs the on-die
Block RAM (BRAM) blocks for the sake of an easier
comparison against results obtained on different devices. We
also report in the appendix of the paper a depiction of the
floorplan of the placed and routed implementation of our design
obtained with the Xilinx PlanAhead floorplanner.

Effectiveness validation setup. The effectiveness validation
was done measuring the power consumption of two protected
implementations differing only by the key employed in the
AES encryption acting as PUF, thus resulting in two different
virtual instances of the device running on the same silicon.
Such a scenario is the ideal case for an attacker, since the only
contribution to the variation of the templates is provided by
Scramble Suit. In a real-world scenario, the attacker would have
to deal also with the effects of process variability which will
be present whenever the attacked device instances do not share
the same silicon. For the sake of clarity, we will denote them
as instance-a and instance-b from now on. The power
traces were collected with a Picoscope 5203 Digital Sampling
Oscilloscope (DSO), sampling at 500 Msamples/s, connected
to the amplified SubMiniature version A (SMA) connector of
the Sakura-G via two cascaded Agilent INA-10386 amplifiers
providing a gain of 26 dB each, with a bandwidth of 1.5 GHz,
in addition to the 14 dB at 350 MHz provided by the on-
board amplifier. We employed as a trigger a dedicated signal
from the protected AES core, forwarded to one of the free
pins in the board pin-header, asserted at the beginning of the
encryption and deasserted at its end. We took care of preventing
measurement pollution from the ringing effects of the trigger
assertion inserting a small delay between the trigger and the
actual beginning of the encryption. All the power traces were

0 100 200 300 400 500 600

99.4

99.5

99.6

99.7

99.8

99.9

100

Number of Features

Fr
ac

tio
n

of
to

ta
l

si
gn

al
va

ri
ab

ili
ty

(%
)

Figure 6. Fraction of the total signal variability depicted as a function of the
number of principal components contributing to it. The principal components
were computed by the PCA employing the 4000 traces of the training set;
each trace is 600 samples long and encompasses the entire AES-128. The
data obtained from instance-a are represented by blue circles, while the
ones from instance-b are depicted as red ×

obtained as the time-wise average of 16 measurements of the
same encryption, after checking that no time-wise misalignment
took place between acquisitions.
Experimental effectiveness validation. We validated our
countermeasure against profiled attacks performed employing
both Bayesian templates [19] and Support Vector Machines
classifiers [21] as described in Section II. Given the fact that
the number of samples s for each power trace is around 600, to
avoid numerical instability and convergence problems for the
classifiers, we applied the three feature selection techniques
currently employed, namely the selection of trace samples
with maximum variance, the selection of trace samples with
the maximum Sum Of Squares of t-difference of means
(SOST) [24], and the Principal Component Analysis (PCA) [25],
[41], (see Section II).

Figures 5(a) and 5(b) report the values of the SOST scores
and sample-wise variances computed over 4000 traces for
both instance-a (blue) and instance-b (red). As it can be
noticed, the figures are substantially the same between the two
devices, a result which is to be expected as the points in time
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(a) Profiled: instance-a. Attacked: instance-a
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(b) Profiled: instance-b. Attacked: instance-b
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(c) Profiled: instance-a. Attacked: instance-b
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(d) Profiled: instance-b. Attacked: instance-a

Figure 7. Template attack results. The depicted data were obtained retrieving all the key bits composing a key byte of the Scramble Suit protected AES
implementation, employing Bayesian templates and PCA , SOST and maximum variance feature reduction techniques. Two virtual instances of the
same device, namely instance-aand instance-b, were considered. For each key bit retrieval attempt, each classifier was trained on 4·103 traces, while the
accuracy percentages were computed over the classification of 40·103 traces. Subfigures 7(a) and 7(b) report the accuracy in attacking a device employing a
side channel profile of the same device. Subfigures 7(c) and 7(d) report the accuracy in attacking a device exploiting the profile of the other one

exhibiting the most significant side channel leakage should be
the same across different instances of the same device. We note
that, while picking the points in time which exhibit the highest
SOST score (i.e., the top ranked SOST features) selects time
instants belonging to the first and last round of the AES-128;
picking the points with maximum variance (i.e., the top ranked
maximum variance features) selects time instants belonging to
intermediate rounds of the cipher. The selection made by the
SOST score matches the common intuition employed in non-
profiled SCA, where the first rounds of the AES implementation
are employed as targets.

However, the heuristic nature of the two selection criteria,
that leverage the variance to select the point of interest, high-
lights two counter-intuitive results: i) the maximum variance
criterion selects time instants corresponding to intermediate
rounds of the AES while ii) SOST reports non zero scores for
the time instants which match in time the last AES rounds.
Finally, we note differences in time instant selection between
instance-a and instance-b and the different scores in the same
time instants can be ascribed to the heuristic nature of the
two selection criteria which include measurement noise in the
computed variance.

Figure 6 reports the fraction of total signal variability derived
from the analysis of the eigenvalues derived from the feature
reduction performed with the PCA, after normalizing the
traces. In particular, the figure reports the percentage of the
total variance taken into account as a function of how many
eigenvalues are considered. We note that considering the first
three eigenvalues is enough to take into account more than
99.5% of the total signal variance, while considering 10 of
them we take into account 99.68% of it. We thus deemed 10
features to be sufficient to represent the information content
of the traces. For the sake of simplicity in the comparison,

we decided to employ the same number of features also for
the SOST and maximum variance feature selection techniques
(highlighted by black markers in Figures 5(a) and 5(b)).

We performed the profiled attacks training two types of clas-
sifiers on the feature-reduced traces, i.e., SVMs and Bayesian
templates, to distinguish a single bit ki of the target key byte
at a time. Employing a single-bit template attack was proven
to be effective, in particular against implementations having
countermeasures for non-profiled attacks [57]. In particular,
we trained a set of eight classifiers, i.e., one per key bit,
for both instance-a and instance-b, and for each pair
of feature reduction and classification technique. The SVM
classifiers were realized by means of their implementation in
the Matlab2017a statistic and machine learning toolbox, while
we implemented from scratch the Bayesian template classifier
according to the description in [19]. The SVMs were trained
employing a Gaussian kernel function, and instructing the
training phase to consider a maximum outliers percentage of
5%. For each bit ki of the attacked key byte, the training set of
traces for both classifiers was acquired measuring 4000 traces
where ki=0, and 4000 traces where ki=1. The remainder of the
key bits was kept to the same value, and randomly distributed
plaintexts were employed. It is worth to note that the use of
a higher number of traces (up to 15·103) lead to very slow,
but steady, poisoning of the classifiers. On the other hand,
employing 4000 traces in the training process allowed to reach
a ≈100% accuracy with both classification methods, given
the use of a proper feature reduction technique. To provide an
ideal scenario for the attacker, we employed the same sequence
of randomly distributed plaintexts for the characterization of
both instance-a and instance-b, and kept the fixed key bits
which were not being classified to the same value. We evaluated
the accuracy of the resulting classifiers through employing a
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(a) Profiled: instance-a. Attacked: instance-a
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(b) Profiled: instance-b. Attacked: instance-b

0 1 2 3 4 5 6 7

0%

25%

50%

75%

100%

Predicted key bit index

A
cc

ur
ac

y

(c) Profiled: instance-a. Attacked: instance-b
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(d) Profiled: instance-b. Attacked: instance-a

Figure 8. Machine learning attack results. The depicted data were obtained retrieving all the key bits composing a key byte of the Scramble Suit protected AES
implementation, employing SVM classifiers and PCA , SOST and maximum variance feature reduction techniques. Two virtual instances of the same
device, namely instance-a and instance-b, were considered. For each key bit retrieval attempt, each classifier was trained on 4·103 traces, while the
accuracy percentages were computed over the classification of 40·103 traces. Subfigures 8(a) and 8(b) report the accuracy in attacking a device employing a
side channel profile of the same device. Subfigures 8(c) and 8(d) report the accuracy in attacking a device exploiting the profile of the other one

set of 40·103 feature-reduced traces (not in the training set),
with an equal amount of traces having the classified bit set to
zero or one. The 40·103 traces were collected using the same
setting as the training ones, while the accuracy was computed
as the percentage of traces which have been correctly labeled
by the classifier.

Figure 7 depicts the results of leading a profiled attack
employing eight pairs of Bayesian templates, namely eight
for instance-a and eight for instance-b. The classifiers
were trained to label the traces according to the value of eight
bits {k0, . . . , k7} of the attacked secret key byte, employing
the three different feature reduction techniques, i.e, PCA
(solid black), SOST (solid gray), and maximum variance
(diagonal lines). In particular, Figures 7(a) and 7(b) report
the results of leading a key recovery against instance-a,
and instance-b employing the classifier trained on the same
device instance. The results show a minimum accuracy of
99.99% on instance-a and 97.80% on instance-b, when
employing traces that have been feature-reduced with PCA.

The SOST and maximum variance feature selection tech-
niques achieve similar results on instance-a, while perform
worse on instance-b. We ascribe such a behavior to the
partially heuristic nature of both the SOST and maximum
variance criteria, as they both consider high variance samples
to be highly informative, which may not be the case.

Figures 7(c) and 7(d) report the accuracy of performing a
cross-device attack, i.e., employing the Bayesian templates
obtained from the profiling of an instance to attack the other
one. The results show a 50.00% maximum accuracy when
employing the PCA reduction technique, which is equivalent
to a random guess, and a 50.72% maximum accuracy when
employing traces that have been feature-reduced with SOST.
We ascribe the minimum deviation from 50.00% taking

place with SOST to numerical instability as the template
classifier is required to handle 40·103×40·103 wide matrices to
compute the resulting predictions. Repeating the classification
with a different set of 40·103 traces leads to smaller or no
discrepancies from the ideal 50.00% accuracy.

Figure 8 reports the results of the profiled attacks performed
with SVM classifiers on both instance-a and instance-b,
following the same graphic conventions of Figure 7. In general
the SVM classifiers perform worse than the Bayesian template
ones, thus practically validating the information theoretic
optimality of the latter technique in the considered scenario.
In particular, machine learning attacks achieve an accuracy
between 99.99% and 93.54% in identifying the correct key
bit for both devices when employing traces that have been
feature-reduced with PCA. Moreover, SVM classifiers are
able to extract the values for the two least significant bit
in instance-b with an accuracy of 50.28% and 74.80%
when the SOST feature selection technique is employed (see
Figure 8(b)), in contrast with the 91.45% and 71.10% accuracy
of the Bayesian template classifiers using the same feature
reduction technique (see Figure 7(b)). We ascribe the difference
in the effectiveness of key extraction to the heuristic nature
of the maximum variance and SOST technique, which may
include samples which are characterized by a high variance, not
necessarily key related. Summarizing the experimental results
of the campaign, Table II reports the amount of traces required
to retrieve all eight key bits querying the classifiers repeatedly
and selecting the answer corresponding to the majority of the
predictions. The results show how retrieving even the worst
predicted bits employing the best profiled attack approach
(templates and PCA) only takes 3 traces, while the random
guess obtained employing a profile obtained on a different
instance does not allow the key retrieval in our evaluation. Such
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Figure 9. Depiction of the first four features computed by the PCA on each of the two sets employed to train the classifiers learning the profile of instance-a
when the first key bit of the attacked byte is set to either 0 (circles) or 1 (crosses), respectively. The corresponding data for instance-b are represented with
the same graphical conventions, employing the color to distinguish instance-a (blue) from instance-b (red).
The plots show that the profiles obtained from instance-a and instance-b, when the targeted key bit is set to the same value for both of them are farther
apart than the profiles obtained from either one of the devices when the target key bit assumes values 0 and 1.
For the sake of clarity in visualization, the figures report three bi-dimensional projections of the data, considering respectively the 1st and 2nd principal
components (a), the 1st and the 3rd (b), and the 1st and the 4th (c).
From the depicted data is possible to infer that i) the profile for a single device is accurate enough to lead an attack, and ii) it is not possible to derive a profile
independent from the inter-device variability out of an averaging of the profiles coming from different device instances

Table II
NUMBER OF TRACES REQUIRED TO DETERMINE THE CORRECT VALUE OF

ALL THE KEY BITS EMPLOYING THE MAJORITY OF THE PREDICTIONS AS A
SELECTION CRITERION, WITH A 99% PROBABILITY OF SUCCESS

(EMPLOYING TEMPLATES AND PCA)

Profiled Attacked Worst No. tracesdevice device Accuracy

instance-a
instance-a 99.99% 3
instance-b 50.00% ∞

instance-b
instance-a 50.00% ∞
instance-b 97.80% 3

data point to the fact that the cross-instance misclassification
is not originating by a lack of accuracy in modeling a given
device instance, but instead comes from the reuse of a classifier
trained for a different virtual device.

Effects of the combination of multiple templates into one.
As a final point of our experimental evaluation, we consider
the possibility of inferring a model for an unknown device
combining the profiles obtained from multiple different ones,
as reported in [30], [31]. To this end, we note that in [31]
the authors analyze how to combine different profiles coming
from 20 different instances of the same 65nm ASIC AES-128
implementation to derive a profile which captures non null
information from the phenomenon. Employing a metric called
perceived information, the authors conclude that combining
the information from the profiles of multiple devices results
in a 56% decrease of the information obtainable attacking
an unknown device with respect to an attack exploiting the
profile of the same device. While providing a theoretical closed-
form assessment of the effects of combining multiple profiles
into a single one is out of the scope of this work, we provide
experimental evidence of the extent of the differences in the side
channel profile of diverse instances of the same device caused
by Scramble Suit. To this end, we analyze the training data

employed in our classifiers after being feature-reduced via PCA.
For the sake of clarity in visualization, we consider only the four
dimensions with the highest eigenvalues obtained employing the
PCA as a feature selection technique. We note that considering
their corresponding eigenvalues in the PCA decomposition such
four dimensions account for at least 99.56% of the variance
of the signal in both device instances.

Figure 9 depicts the selected features for the four sets of 4000
traces, each one of which was employed to train a classifier
to distinguish the value of the first bit of the key value under
attack. We do not report the results for the other bits, as they
are analogous and do not contribute with further information to
the work. For the sake of clarity, the feature-reduced traces are
depicted considering their projection on two features at once,
and employing the said two features as coordinates to plot the
point representing the feature-reduced trace on a bi-dimensional
plane. We depict the traces coming from instance-a in blue
and instance-b in red, while we represent the value of the
targeted key bit employed in the measure changing the form
of the mark: a circle represents a value of zero for the key bit,
while a cross represents one.

First of all, we note that the profile obtained for a single
device is suitable for an attack lead with a SVM classifier, as
the cluster of projected traces with different key values coming
from the same instance of the device can be easily separated
by a straight line boundary. Moreover, Bayesian templates are
also well suited to classify the device behavior, as the two
populations of traces (one for each value of the key bit under
attack) are well characterized by their mean and variance, as
there is substantially no sample from one population within a
standard-deviation-wide interval from the mean of the other.

Concerning the possibility of deriving a profile from multiple
devices (two in this case), the reported data allow to infer that
profiles obtained combining the traces coming from different
device instances would not yield usable classifiers. In particular,
we note that the distance between the two sample means of
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Figure 10. Floorplan of the proposed design as placed and routed on the Spartan 6 LX75 target FPGA

the sets of traces obtained with the same value of the profiled
key bit on different devices is higher than the one between
the set of traces obtained with different values of the key bit
on the same device in almost all cases. This, in turn, implies
that combining the traces obtained from different devices will
result in a model showing an accurate fit for none of them,
provided the sets are far enough. In this respect, we note that
the Scramble Suit approach allows to further separate such
sets, as adding more than one extra replica of the cipher will
cause an increase in the inter-device distances among the set
of traces. Indeed, adding more than one replica has the effect
of pushing further the process variation amplification effect
provided by Scramble Suit.

V. CONCLUDING REMARKS

We proposed Scramble Suit, an architectural countermeasure
to cross-device profiled attacks that remains independent from
the EDA tool employed to synthesize and to place-and-route
the design. As a case study, we provided an instantiation of
Scramble Suit employing an AES-128 cipher implementation
and evaluated its resistance to profiled attacks against both
the Bayesian template attack approach, and the machine
learning approach based on SVM classifiers. In addition, three
different state-of-the-art feature reduction techniques were
employed to increase the effectiveness of the attacks. We proved
how our countermeasure foils the key retrieval attempts via
profiled attacks reducing their key derivation accuracy to a
random guess, and showed an area overhead coming from
our architectural design of only 28% more LUTs and 77%
more flip-flops (to which the area of the chosen PUF solution
should be added) with respect to an unprotected AES cipher
implementation. Such figures of merit make our architectural
proposal particularly interesting in case the device is already
endowed with a PUF IP core for device attestation purposes.

APPENDIX

Figure 10 reports the floorplan of the placed and routed
design of our case study protected implementation of AES-

128 on the target Spartan 6 LX75 FPGA. The floorplan is
obtained with Xilinx PlanAhead, which also picks the colormap
to be employed to draw the floorplan. The registers holding
the keyschedules for KeyMem and KeyMem-P are depicted in
brown and green, respectively. The shared logic between the
two implementations (e.g., SBOX, UART port) is depicted in
grey. Components pertaining to the computation of the first
datapath of AES (e.g., AES-Comb-a, State-a, read port for the
SBOX) are depicted in red, while the corresponding ones for
the second datapath are depicted in blue. It can be observed
how the automated placement of the logic elements contributed
to blend the circuitry composing the datapaths of the two AES
instances, effectively providing a further practical hindrance to
spatial separation via local EM probing. Such an effect is a
welcome addition to the randomized choice of the datapath on
which the two AES computations are carried out.
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