3 research outputs found

    Fitness Activity Recognition on Smartphones Using Doppler Measurements

    Get PDF
    Quantified Self has seen an increased interest in recent years, with devices including smartwatches, smartphones, or other wearables that allow you to monitor your fitness level. This is often combined with mobile apps that use gamification aspects to motivate the user to perform fitness activities, or increase the amount of sports exercise. Thus far, most applications rely on accelerometers or gyroscopes that are integrated into the devices. They have to be worn on the body to track activities. In this work, we investigated the use of a speaker and a microphone that are integrated into a smartphone to track exercises performed close to it. We combined active sonar and Doppler signal analysis in the ultrasound spectrum that is not perceivable by humans. We wanted to measure the body weight exercises bicycles, toe touches, and squats, as these consist of challenging radial movements towards the measuring device. We have tested several classification methods, ranging from support vector machines to convolutional neural networks. We achieved an accuracy of 88% for bicycles, 97% for toe-touches and 91% for squats on our test set

    Context-aware human activity recognition in industrial processes

    Get PDF
    The automatic, sensor-based assessment of human activities is highly relevant for production and logistics, to optimise the economics and ergonomics of these processes. One challenge for accurate activity recognition in these domains is the context-dependence of activities: Similar movements can correspond to different activities, depending on, e.g., the object handled or the location of the subject. In this paper, we propose to explicitly make use of such context information in an activity recognition model. Our first contribution is a publicly available, semantically annotated motion capturing dataset of subjects performing order picking and packaging activities, where context information is recorded explicitly. The second contribution is an activity recognition model that integrates movement data and context information. We empirically show that by using context information, activity recognition performance increases substantially. Additionally, we analyse which of the pieces of context information is most relevant for activity recognition. The insights provided by this paper can help others to design appropriate sensor set-ups in real warehouses for time management
    corecore