1,084 research outputs found

    Tier-Scalable Reconnaissance Missions For The Autonomous Exploration Of Planetary Bodies

    Get PDF
    A fundamentally new (scientific) reconnaissance mission concept, termed tier-scalable reconnaissance, for remote planetary (including Earth) atmospheric, surface and subsurface exploration recently has been devised that soon will replace the engineering and safety constrained mission designs of the past, allowing for optimal acquisition of geologic, paleohydrologic, paleoclimatic, and possible astrobiologic information of Venus, Mars, Europa, Ganymede, Titan, Enceladus, Triton, and other extraterrestrial targets. This paradigm is equally applicable to potentially hazardous or inaccessible operational areas on Earth such as those related to military or terrorist activities, or areas that have been exposed to biochemical agents, radiation, or natural disasters. Traditional missions have performed local, ground-level reconnaissance through rovers and immobile landers, or global mapping performed by an orbiter. The former is safety and engineering constrained, affording limited detailed reconnaissance of a single site at the expense of a regional understanding, while the latter returns immense datasets, often overlooking detailed information of local and regional significance

    Space station systems: A bibliography with indexes

    Get PDF
    This bibliography lists 967 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1987 and June 30, 1987. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems. The coverage includes documents that define major systems and subsystems, servicing and support requirements, procedures and operations, and missions for the current and future space station

    Performance Evaluation for IP Protection Watermarking Techniques

    Get PDF

    Tier-scalable reconnaissance: the challenge of sensor optimization, sensor deployment, sensor fusion, and sensor interoperability

    Get PDF
    Robotic reconnaissance operations are called for in extreme environments, not only those such as space, including planetary atmospheres, surfaces, and subsurfaces, but also in potentially hazardous or inaccessible operational areas on Earth, such as mine fields, battlefield environments, enemy occupied territories, terrorist infiltrated environments, or areas that have been exposed to biochemical agents or radiation. Real time reconnaissance enables the identification and characterization of transient events. A fundamentally new mission concept for tier-scalable reconnaissance of operational areas, originated by Fink et al., is aimed at replacing the engineering and safety constrained mission designs of the past. The tier-scalable paradigm integrates multi-tier (orbit atmosphere surface/subsurface) and multi-agent (satellite UAV/blimp surface/subsurface sensing platforms) hierarchical mission architectures, introducing not only mission redundancy and safety, but also enabling and optimizing intelligent, less constrained, and distributed reconnaissance in real time. Given the mass, size, and power constraints faced by such a multi-platform approach, this is an ideal application scenario for a diverse set of MEMS sensors. To support such mission architectures, a high degree of operational autonomy is required. Essential elements of such operational autonomy are: (1) automatic mapping of an operational area from different vantage points (including vehicle health monitoring); (2) automatic feature extraction and target/region-of-interest identification within the mapped operational area; and (3) automatic target prioritization for close-up examination. These requirements imply the optimal deployment of MEMS sensors and sensor platforms, sensor fusion, and sensor interoperability

    Management: A bibliography for NASA managers

    Get PDF
    This bibliography lists 653 reports, articles and other documents introduced into the NASA scientific and technical information system in 1987. Items are selected and grouped according to their usefulness to the manager as manager. Citiations are grouped into ten subject categories; human factors and personnel issues; management theory and techniques; industrial management and manufacturing; robotics and expert systems; computers and information management; research and development; economics, costs and markets; logistics and operations management, reliability and quality control; and legality, legislation, and policy

    IP Delivery for FPGAs Using Applets and JHDL

    Get PDF
    This paper introduces an FPGA IP evaluation and delivery system that operates within Java applets. The use of such applets allows designers to create, evaluate, test, and obtain FPGA circuits directly within a web browser. Based on the JHDL design tool, these applets allow structural viewing, circuit simulation, and netlist generation of applicationspecific circuits. Applets can be customized to provide varying levels of IP visibility and functionality as needed by both customer and vendor

    A Homomorphic Encryption Framework for Privacy-Preserving Spiking Neural Networks

    Get PDF
    Machine learning (ML) is widely used today, especially through deep neural networks (DNNs); however, increasing computational load and resource requirements have led to cloud-based solutions. To address this problem, a new generation of networks has emerged called spiking neural networks (SNNs), which mimic the behavior of the human brain to improve efficiency and reduce energy consumption. These networks often process large amounts of sensitive information, such as confidential data, and thus privacy issues arise. Homomorphic encryption (HE) offers a solution, allowing calculations to be performed on encrypted data without decrypting them. This research compares traditional DNNs and SNNs using the Brakerski/Fan-Vercauteren (BFV) encryption scheme. The LeNet-5 and AlexNet models, widely-used convolutional architectures, are used for both DNN and SNN models based on their respective architectures, and the networks are trained and compared using the FashionMNIST dataset. The results show that SNNs using HE achieve up to 40% higher accuracy than DNNs for low values of the plaintext modulus t, although their execution time is longer due to their time-coding nature with multiple time steps

    FY 1991 scientific and technical reports, articles, papers, and presentations

    Get PDF
    Formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY 1991 are presented. Papers of MSFC contractors are also included. The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available
    • …
    corecore