452 research outputs found

    Connector 0.5: A unified framework for graph representation learning

    Full text link
    Graph representation learning models aim to represent the graph structure and its features into low-dimensional vectors in a latent space, which can benefit various downstream tasks, such as node classification and link prediction. Due to its powerful graph data modelling capabilities, various graph embedding models and libraries have been proposed to learn embeddings and help researchers ease conducting experiments. In this paper, we introduce a novel graph representation framework covering various graph embedding models, ranging from shallow to state-of-the-art models, namely Connector. First, we consider graph generation by constructing various types of graphs with different structural relations, including homogeneous, signed, heterogeneous, and knowledge graphs. Second, we introduce various graph representation learning models, ranging from shallow to deep graph embedding models. Finally, we plan to build an efficient open-source framework that can provide deep graph embedding models to represent structural relations in graphs. The framework is available at https://github.com/NSLab-CUK/Connector.Comment: An unified framework for graph representation learnin

    Learning Disentangled Representations in Signed Directed Graphs without Social Assumptions

    Full text link
    Signed graphs are complex systems that represent trust relationships or preferences in various domains. Learning node representations in such graphs is crucial for many mining tasks. Although real-world signed relationships can be influenced by multiple latent factors, most existing methods often oversimplify the modeling of signed relationships by relying on social theories and treating them as simplistic factors. This limits their expressiveness and their ability to capture the diverse factors that shape these relationships. In this paper, we propose DINES, a novel method for learning disentangled node representations in signed directed graphs without social assumptions. We adopt a disentangled framework that separates each embedding into distinct factors, allowing for capturing multiple latent factors. We also explore lightweight graph convolutions that focus solely on sign and direction, without depending on social theories. Additionally, we propose a decoder that effectively classifies an edge's sign by considering correlations between the factors. To further enhance disentanglement, we jointly train a self-supervised factor discriminator with our encoder and decoder. Throughout extensive experiments on real-world signed directed graphs, we show that DINES effectively learns disentangled node representations, and significantly outperforms its competitors in the sign prediction task.Comment: 26 pages, 11 figure

    HHMF: hidden hierarchical matrix factorization for recommender systems

    Get PDF
    Abstract(#br)Matrix factorization (MF) is one of the most powerful techniques used in recommender systems. MF models the (user, item) interactions behind historical explicit or implicit ratings. Standard MF does not capture the hierarchical structural correlations, such as publisher and advertiser in advertisement recommender systems, or the taxonomy (e.g., tracks, albums, artists, genres) in music recommender systems. There are a few hierarchical MF approaches, but they require the hierarchical structures to be known beforehand. In this paper, we propose a Hidden Hierarchical Matrix Factorization (HHMF) technique, which learns the hidden hierarchical structure from the user-item rating records. HHMF does not require the prior knowledge of hierarchical structure; hence, as opposed to..
    • …
    corecore