38 research outputs found

    DAG-Based Attack and Defense Modeling: Don't Miss the Forest for the Attack Trees

    Full text link
    This paper presents the current state of the art on attack and defense modeling approaches that are based on directed acyclic graphs (DAGs). DAGs allow for a hierarchical decomposition of complex scenarios into simple, easily understandable and quantifiable actions. Methods based on threat trees and Bayesian networks are two well-known approaches to security modeling. However there exist more than 30 DAG-based methodologies, each having different features and goals. The objective of this survey is to present a complete overview of graphical attack and defense modeling techniques based on DAGs. This consists of summarizing the existing methodologies, comparing their features and proposing a taxonomy of the described formalisms. This article also supports the selection of an adequate modeling technique depending on user requirements

    Do not trust me: Using malicious IdPs for analyzing and attacking Single Sign-On

    Full text link
    Single Sign-On (SSO) systems simplify login procedures by using an an Identity Provider (IdP) to issue authentication tokens which can be consumed by Service Providers (SPs). Traditionally, IdPs are modeled as trusted third parties. This is reasonable for SSO systems like Kerberos, MS Passport and SAML, where each SP explicitely specifies which IdP he trusts. However, in open systems like OpenID and OpenID Connect, each user may set up his own IdP, and a discovery phase is added to the protocol flow. Thus it is easy for an attacker to set up its own IdP. In this paper we use a novel approach for analyzing SSO authentication schemes by introducing a malicious IdP. With this approach we evaluate one of the most popular and widely deployed SSO protocols - OpenID. We found four novel attack classes on OpenID, which were not covered by previous research, and show their applicability to real-life implementations. As a result, we were able to compromise 11 out of 16 existing OpenID implementations like Sourceforge, Drupal and ownCloud. We automated discovery of these attacks in a open source tool OpenID Attacker, which additionally allows fine-granular testing of all parameters in OpenID implementations. Our research helps to better understand the message flow in the OpenID protocol, trust assumptions in the different components of the system, and implementation issues in OpenID components. It is applicable to other SSO systems like OpenID Connect and SAML. All OpenID implementations have been informed about their vulnerabilities and we supported them in fixing the issues

    Uml-based modeling of non-functional requirements in telecommunication systems. In:

    Get PDF
    Abstract-Successful design of real-time embedded systems relies heavily on the successful satisfaction of their non-functional requirements. Model-driven engineering is a promising approach for coping with the design complexity of embedded systems. However, when it comes to modeling non-functional requirements and covering specific aspects of different domains and types of embedded systems, general modeling languages for real-time embedded systems may not be able to cover all of these aspects. One solution is to use a combination of modeling languages for modeling different non-functional requirements as is done in the definition of EAST-ADL modeling language for automotive domain. In this paper, we propose a UML-based solution, consisting of different modeling languages, to model non-functional requirements in telecommunication domain, and discuss different challenges and issues in the design of telecommunication systems that are related to these requirements

    Secure Virtual Machine Migration in Cloud Data Centers

    Get PDF
    While elasticity represents a valuable asset in cloud computing environments, it may bring critical security issues. In the cloud, virtual machines (VMs) are dynamically and frequently migrated across data centers from one host to another. This frequent modification in the topology requires constant reconfiguration of security mechanisms particularly as we consider, in terms of firewalls, intrusion detection/prevention as well as IPsec policies. However, managing manually complex security rules is time-consuming and error-prone. Furthermore, scale and complexity of data centers are continually increasing, which makes it difficult to rely on the cloud provider administrators to update and validate the security mechanisms. In this thesis, we propose a security verification framework with a particular interest in the abovementioned security mechanisms to address the issue of security policy preservation in a highly dynamic context of cloud computing. This framework enables us to verify that the global security policy after the migration is consistently preserved with respect to the initial one. Thus, we propose a systematic procedure to verify security compliance of firewall policies, intrusion detection/prevention, and IPsec configurations after VM migration. First, we develop a process algebra called cloud calculus, which allows specifying network topology and security configurations. It also enables specifying the virtual machines migration along with their security policies. Then, the distributed firewall configurations in the involved data centers are defined according to the network topology expressed using cloud calculus. We show how our verification problem can be reduced to a constraint satisfaction problem that once solved allows reasoning about firewall traffic filtering preservation. Similarly, we present our approach to the verification of intrusion detection monitoring preservation as well as IPsec traffic protection preservation using constraint satisfaction problem. We derive a set of constraints that compare security configurations before and after migration. The obtained constraints are formulated as constraint satisfaction problems and then submitted to a SAT solver, namely Sugar, in order to verify security preservation properties and to pinpoint the configuration errors, if any, before the actual migration of the security context and the virtual machine. In addition, we present case studies for the given security mechanisms in order to show the applicability and usefulness of our framework, and demonstrate the scalability of our approach

    Representation and analysis of coordinated attacks

    Full text link

    Formally Verifying Information Flow Type Systems for Concurrent and Thread Systems

    Get PDF
    http://portal.acm.org/Information flow type systems provide an elegant means to enforce confidentiality of programs. Using the proof assistant Isabelle/HOL, we have machine-checked a recent work of Boudol and Castellani~\cite{BC02:tcs}, which defines an information flow type system for a concurrent language with scheduling, and shows that typable programs are non-interferent. As a benefit of using a proof assistant, we are able to deal with a more general language than the one studied by Boudol and Castellani. The development constitutes to our best knowledge the first machine-checked account of non-interference for a concurrent language

    A framework for compositional verification of security protocols

    Get PDF
    Automatic security protocol analysis is currently feasible only for small protocols. Since larger protocols quite often are composed of many small protocols, compositional analysis is an attractive, but non-trivial approach. We have developed a framework for compositional analysis of a large class of security protocols. The framework is intended to facilitate automatic as well as manual verification of large structured security protocols. Our approach is to verify properties of component protocols in a multi-protocol environment, then deduce properties about the composed protocol. To reduce the complexity of multi-protocol verification, we introduce a notion of protocol independence and prove a number of theorems that enable analysis of independent component protocols in isolation. To illustrate the applicability of our framework to real-world protocols, we study a key establishment sequence in WiMAX consisting of three subprotocols. Except for a small amount of trivial reasoning, the analysis is done using automatic tools
    corecore