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ABSTRACT 
In this paper, we propose a formal model of coordinated attacks 
in which several attackers cooperate towards a common malicious 
goal. The model investigates both attack planning and vulnerabil- 
ity analysis, thereby providing a uniform approach to system and 
adversary modelling. In addition, the model is general enough to 
explain both coordinated and single attacks. 

In the paper, we define the notion of coordinated-attack graph, 
propose an algorithm for efficient generation of coordinated-attack 
graphs, demonstrate how coordinated-attack can be used for vul- 
nerability analysis, and discuss an implementation of a coordinated- 
attack graph. 

Coordinated-attack graphs can facilitate a wide range of tasks, 
such as model checking, opponent modelling, intrusion response, 
sensor configuration, and so forth. In addition, they can be used in 
robotic warfare, where several intelligent software agents automat- 
ically produce and launch coordinated attacks. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification - -  
formal methods, model checking 

General Terms 
Security 

Keywords 
Coordinated attack, attack graph, adversary modelling, attack plan, 
model checking 

1. INTRODUCTION 
Organized attacks aiming at disrupting critical infrastructure are 

usually beyond the power of a single attacker. To achieve their 
goal, several attackers cooperate by resource sharing, task alloca- 
tion, and synchronization. Coalitions of malicious attackers may 
include both human and artificial agents, i.e., intelligent software 
agents acting on behalf of humans. A recent CERT report [ 13] con- 
cludes that modern attack tools are rapidly evolving and becoming 
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more sophisticated. Unlike early attacks, launched by a single at- 
tacker to a single victim, recent attacks are better coordinated and 
difficult to discover. A notorious example is the October 23rd at- 
tack on DNS root servers [20]. 

Most literature on distributed attacks has traditionally focused on 
distributed denial of services (DDoS), in which an attacker breaks 
into several machines, or joins other attackers to simultaneously 
attack a target host or network. A distributed attack, however, is 
a very simple form of coordinated attack, where many intelligent 
attackers coordinate in real time. Given the present state of coor- 
dinated attacks, we could expect new and more damaging patterns 
of distributed attacks in the near future. Our concern is that cur- 
rent attack patterns have not utilized the full potential for real time 
coordination and cooperation. 

In our previous research [5], we identified several problems with 
coordinated attacks: 

• Coordinated attacks could be designed to avoid detection. 
Many defense technologies can be easily defeated by a so- 
phisticated coordinated attack capable of breaking the attack 
pattern into many apparently innocent pieces. Think of the 
following example. Consider a large crowd (users, processes, 
hosts, threads) with few attackers hiding inside it and execut- 
ing a coordinated attack plan. Due to the large crowd, it is 
practically impossible to discern individual attackers many 
of which could be performing apparently innocuous actions. 
Once the attack succeeds it is clear who the attackers are, but 
at this point it is too late to make a difference. 

• It is difficult to differentiate between decoy and actual 
attacks. Consider the case where members of a malicious 
group launch several simultaneous attacks on a system. In 
order to mislead the intrusion response system, all but one 
of these attacks are designed to be decoy. That is, they are 
launched for the sole purpose of distracting the intrusion re- 
sponse system and consuming its resources. Decoy attacks 
may have different goals. They could: create many simul- 
taneous alerts in order to mislead or confuse the IDS; waste 
system response time on decoy goals; or perform a DoS at- 
tack on the IDS. 

• There is a large variety of coordinated attacks. Attackers 
may attack single or multiple victims. Some attacks could be 
automatically replicated or duplicated, thereby accumulating 
more power. Other attacks may be supporting, i.e.,launched 
in parallel with the main attack, with the aim of providing 
auxiliary functionality such as cover-up, back-up, trace re- 
moving, etc. 

Although the paper discusses primarily insider attacks, the mod- 
els presented are general enough to be applied to a wide range of 
scenarios including insider, outsider, and mixed attacks. 
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Since the actions of different attackers interact, we cannot spec- 
ify the effects of an individual attacker's action without taking into 
account what actions might be performed by other attackers at the 
same time. It is often the case that the effect an action is modi- 
fied by another action executed concurrently by another attacker. 
In other words, the result of a joint  action, executed simultaneously 
by several attackers, could go beyond the sum of individual actions. 

Current research on vulnerability analysis, including graph-based 
systems [22, 24, 17, 15, 16, 23] and correlation-attack languages 
[7, 21, 26], has mainly focused on serial attacks, i.e., sequences of 
atomic actions leading to a security breach. Although correlation 
analysis has been applied to analyze relationships between different 
ongoing attacks, little attention was paid to correlating individual 
actions across users in order to identify a single attack. In a coordi- 
nated attack, attackers' actions interfere with one another, making 
it difficult to analyze an action out of the context of other actions. 
Consider, for example, two legitimate users with different access 
rights. While the first user has access to sensitive data, and no ac- 
cess to an external network, the second user has external network 
access, and no access to sensitive data. The users could collude 
and launch a coordinated insider attack. They could first establish 
a covert channel between them, and then let the system leak sen- 
sitive information. In this case, most intrusion detection systems 
would detect an authorized access to sensitive data and an autho- 
rized network access, without being able to correlate them. 

The simplest way to handle interactions between concurrent at- 
tackers' actions is to consider each joint  action as an atomic action, 
i.e., to consider the group of attackers as a single attacker. Specifi- 
cally, if A~ denotes the actions available to attacker i, then the joint 
action space is A1 x A2 x ... × An. That is, a joint action is a 
combination of all individual actions taken at the same time. One 
may see each element of the joint  action space as an atomic action, 
and specify its effect using existing specification languages such as 
STATL [21] and P-BEST [7]. The main advantage of this reduc- 
tion is that vulnerability analysis can be performed using available 
methods and tools. Such an approach, however, has some seri- 
ous disadvantages as far as expressiveness is concerned, as well 
as ease of representation and analytic power. First, the number of 
joint actions increases exponentially with the number  of attackers 
(assuming that each attacker can execute at most one action at a 
time). This leads to a super-exponential blowup of specification 
and system models. Second, this reduction fails to account for the 
interaction between attacker's actions, and thereby to provide data 
for further correlation analysis. Third, it fails to exploit the fact 
that many attackers'actions may not interact at all, or interact un- 
der some conditions only. 

In this paper we propose a formal model of coordinated attacks 
in which several attackers coordinate their actions to achieve the 
common goal of compromising a computer or network system. A 
distinctive feature of the model is its ability to account for concur- 
rent interdependent attackers' actions. In a concurrent-action at- 
tack, each individual action can bring about the desired effect only 
if properly coordinated with other actions which could be concur- 
rently or sequentially applied. 

The paper is organized as follows. Section 2 introduces a for- 
mal model of concurrent systems. Section 3 defines the notion of 
coordinated attack plan. Section 4 discusses how several attack 
plans may combine into a coordinated-attack graph. The section 
also presents an efficient algorithm for generating attack graphs. 
Section 5 illustrates how coordinated-attack graphs can be used for 
vulnerability analysis. Finally, Section 6 discusses an implementa- 
tion of a coordinated-attack graph. 

2. F O R M A L  F R A M E W O R K  
In this section, we describe a model of coordinated attacks that 

accounts for synergy and coordination among attackers. 

1. S is a finite set of system states 

2. So C S is a set of initial sets 

3. System states are truth assignments to ground atomic formu- 
lae. A state is represented as a set (or conjunction) of those 
ground atomic formulae that are true in the state. For exam- 
ple, the state in which userl  has logged and accessed filel is 
represented as: 

logged(user1) A accessed(user1, f i lel)  

This implies the closed world assumption, i.e., every atomic 
formula not listed in a state evaluates to FALSE. 

4. A~ is the set of actions available to attacker i. The joint  action 
space is A = A1 x A2 x ... x An.  That is, each joint  action 
d = (a l ,  a2, ..., an) ,  ai  C Ai, is a combination of individual 
actions performed by each of the attackers. Throughout this 
paper, we assume that an attacker can perform at most one 
action at a time. Some of the actions could be e, a null or 
no-op action. We assume that e E A~ for i = 1, ..., n.  In 
other words, some attackers could be idle at some stages of 
the attack. 

5. T C S × A × S is a trinary relation, the transition rela- 
tion, which gives possible transitions between states. That is, 
T(sl, ~, s2) describes a transition from state Sl to s2, if  joint  
action ~ is taken in state s l .  In this paper, we constrain our 
attention to deterministic transitions. The model can easily 
be generalized to handle nondeterministic actions by intro- 
ducing a probability distribution on the space of resulting ac- 
tions. Note that the joint action ~ is not an atomic action, but 
a vector of individual actions, each defined separately. Since 
the effects of the concurrent actions applied to s l  interfere, 
the resulting state s2 is determined by all concurrent actions. 

6. G is the attackers' goal, i.e., a first-order formula describing 
a compromised system state. So ,  SG C S is a set of system 
states in which the goal is satisfied. Note that, G could be a 
complex goal consisting of several concurrent goals. In this 
case, it could be represented as a conjunctive lists of formu- 
las. 

For the ease of notation, each action is described by a generic ac- 
tion schema specifying: who is performing the action, what are the 
action preconditions, what other actions must be performed concur- 
rently, and what is the final effect of the action. Figure 1 describes 
the format of an action schema. In a schema, action preconditions 
specify which atomic formulae must be true in the current state of 
the system in order to apply the action. The postconditions specify 
which atomic formulae become true and which become false after 
the action is executed. The concurrent list specifies other actions 
that must be simultaneously executed or not executed for a given 
action to have its intended effect. To specify a concrete action, all 
free variables in a schema must be bound to constants. In other 
words, every action is a fully instantiated action schema. We as- 
sume that conjunctive lists, pre- and postconditions are consistent, 
i.e., jointly satisfiable. That is, there exists at least one variable 
assignment that satisfies them in at least one system state. For ex- 
ample, a concurrent action list must not require that a particular 
action be applied and not applied at the same time in a given state. 
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action <first-order predicate> 
:parameters 

<list-of-free-variables> 
:preconditions 

< conjuctive-list-of-predicates > 
:concurrent <conjuctive-list-of-action-names> 
:postconditious <conjuctive-list-of-predicates> 

Figure 1: Action schema 

An action (a fully instantiated action schema) can be executed 
only if it's preconditions are true. After the action execution, the 
system state is changed in the following way. All positive literals 
from postconditions are added into the state description while all 
negative literals are removed. For example, if executed in state 

logged(user1 ) A accessed(user1,  f i le1)  

a logging off action with a postcondition not(logged(user1)) will 
change the current state to 

accessed(user1,  f i l e l ) )  

Our action representation significantly differs from representa- 
tions used in attack graphs. First, it allows for free variables, thereby 
allowing an action schema to present a whole class of instant ac- 
tions. When an action schema is instantiated, all variables must 
be bound to constants. Second, it allows for concurrent actions, 
and explicitly describes action dependence. Synchronization and 
coordination among attackers is captured by the concurrent action 
list. It specifies what actions must be executed concurrently in or- 
der to enable positive synergy, and what action combinations are 
prohibited in order to avoid negative synergy. That is, some actions 
must be taken (for positive synergy) or must not be taken (for neg- 
ative synergy) in order for a given action to have its intended effect 
specified by postconditions. Since an attacker can perform at most 
one action at a time, all concurrent actions must be performed by 
different attackers. 

Figure 2 represents two concurrent actions corresponding to a 
symbolic link race condition [10]. In this attack, two insiders, user1 
and user2, cooperate in order to gain access to file, which they are 
not authorized to access. User1 creates symbolic link file1 pointing 
to file2. We suppose that user1 has access to read and write both 
file1 and file2. After establishing the symbolic link, user1 calls 
open(filel, O_RDWR). The system resolves the symbolic link and 
checks that access to file2 is allowed. Meanwhile, user2 changes 
the symbolic link file1 to point to file. As a result, the system exe- 
cutes open(file, O_RDWR), granting user1 access to file. 

The intended semantics of an action scheme is captured by the 
following definition. 

DEFINITION 1. A joint action ~ = (al ,  a2, ..., a,~), ai E Ai, a 
combination of  individual actions, is consistent in the current state 
sift." 

• The preconditions of  all individual actions are jointly logi- 
cally consistent in s. That is, the conjunction of  all atomic 
formulae in precondition lists evaluates to TRUE in s. 

• The postconditions are jointly consistent in s. That is, there 
are no two actions such that the first one brings about a 
ground atom while the second action brings about the nega- 
tion of  that atom. In other words, action effects do not con- 
flict with one another. 

action open(user 1,file,O_RDWR) 
:parameters 

userl, file, filel, file2 
:preconditions 

can-access(userl, file 1,O_RDWR)A 
can-access(userl, file2,O_RDWR) A 
symbolic-link(file 1,file2) 

:concurrent change-link(user2, file 1, file) 
:postconditions opened(user, file, O_RDWR) 

action change-link(user2, filel, file) 
:parameters 

user2, file, filel 
:preconditions 

can-access(user2, filel,O_RDWR) 
:postconditions symbolic-link(filel,file) 

Figure 2: Action description 

• Each action aj mentioned in the concurrent list of  some ai 
belongs to the joint action. In other words, it is executed by 
some other attacker j ,  different from i. 

• The negation of  action aj, mentioned in the concurrent list o f  
some ai, does not belong to the joint action. In other words, 
no other action negatively interferes with ai. 

If a joint action ~ is consistent in s, then it can be executed in that 
state. This results in a concurrent execution of several actions. The 
resulting state is obtained by adding all positive literals and delet- 
ing all negative literals from the postcondition lists of concurrent 
actions. 

3. A COORDINATED ATTACK PLAN 
In an adversarial environment, the best defence strategy depends 

on what the defendant believes about the attacker's strategy, which 
in turn depends on what the attacker believes about the defendant 
strategy, and so forth, leading to an infinite recursion of beliefs. In 
game theory and artificial intelligence, several methods have been 
proposed to represent and reason about adversaries [6]. Current 
research on vulnerability analysis usually represents an information 
system only from the perspective of the security analyst, thereby 
missing the other part of the equation. As Sun Tzu puts it in his 
treatise on the art of war [25]: "If  you know the enemy and know 
yourself, you need not fear the result of a hundred battles. If you 
know yourself but not the enemy, for every victory gained you will 
also suffer a defeat." 

In this section, we propose a formal model of coordinated at- 
tacks which can serve both as a semantic model of a concurrent 
computer (or network) system and as a planning model for a group 
of attackers. That is, the model incorporates the viewpoints of both 
the security analyst and the attackers. This is quite a natural ap- 
proach, given that an attacker usually launches an attack based on 
a model of the system, and the system analysts evaluates a model 
against a set of possible attacks. In addition, the model is general 
enough to explain both coordinated and single attacks. 

The semantics of individual actions in coordinated attacks is dif- 
ferent from their semantics in individual attacks. In coordinated 
attacks, it is not individual actions that transform one state of the 
system into another. Rather, the state transitions are triggered by 
joint actions concurrently executed by several attackers. 
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DEFINITION 2. An individual plan pi for attacker i is a se- 
quence of  actions 

i i i 
p~ = (a 0 ( s o ) , a  2 ( s l ) , , a  k(Sk)) 

where action aij  (sj ) is executed in state sj  by attacker i. 

An individual plan is deterministic in the sense that each attacker 
knows what action to execute at every state of the system. At first 
sight, this might seem a limiting assumption since attackers are usu- 
ally prepared to react to unforeseen failures and contingencies. For 
example, attackers often employ contingency plans that allow them 
to recover from unexpected accidents. Such scenarios traditionally 
fall in the domain of contingency planning [ 19, 3]. Using standard 
methods from contingency planning, the model presented in this 
paper can easily be extended to include conditional actions. 

We assume that the system state is accessible for attackers in the 
sense that they have the knowledge and the skills to differentiate 
between the states in the attack plan. This assumption prevents 
miscoordination caused by inability of an attacker to correctly de- 
termine the present state of the system. By this, we do not as- 
sume that attackers have complete knowledge of every situation 
they could encounter. First, attackers need to differentiate between 
attack-relevant states, not between all possible states. Second, in 
order to differentiate between relevant states, attackers need only 
to know or discern some distinctive features of the states. 

If we combine all actions executed at a certain stage of the attack 
j ,  j : 1, ..., k, we obtain the attackers' joint action at that stage. 
It is natural to define a coordinated attack plan as a sequence of 
attackers' joint actions. 

DEFINITION 3. A coordinated-attack plan P for a group of  at- 
tackers G is the union of  coordinated individual plans of  the mem- 
bers of  the group. The coordination between attackers is specified 
at action level trough precondition and concurrent conditions. 

That is, a coordinated-attack plan P is a sequence of joint actions: 

p : ( a 0 ( s 0 ) , a l ( s l ) , , a k ( s k ) )  

where a joint action aj (s j ) ,  taken in state sj ,  is defined as the com- 
bination of all concurrent actions executed by each attacker in sj : 

a j ( s j )  : ( a l j ( s j ) ,  a2y (s j ) ,  ..., ann(s j ) )  

Every coordinated-attack plan starts in the current state so and 
finishes in some final state where the attackers's goal (or goals) is 
achieved, i.e., the system security is compromised. The plan speci- 
fies what action has to be taken by each agent in each state, in order 
to reach the goal state. At first sight it may seem counterintuitive 
that the attackers' goal is always satisfied in the final state. The 
goal of planning, however, is to plan for success. After all nobody 
plans for failure. Whether or not a plan will succeed depends on 
the validity of its assumptions. 

A coordinated-attack plan can be conveniently represented as 
a directed and acyclic multigraph where nodes represent system 
states and arcs correspond to actions. All arcs leaving a node rep- 
resent actions concurrently started at that node. Similarly, all arcs 
pointing to a node represent actions concurrently finished at that 
node. The intended meaning is that all arcs between two nodes 
must be traversed concurrently (by different attackers), in order to 
move the system from the first to the second state. Figure 3 shows a 
coordinated-attack plan for the race condition example. The attack- 
ers'  goal is to open file ~, which they are not authorized to access. 
They start in the initial state so and achieve their goal of opening 
t f  in s5. Note that, in order to move the system from state s2 to 
s5, userl's action a12 has to be concurrently applied with user2's 

actions a22, a23, and a24. That is, links connecting s2 and s5 must 
be traversed concurrently. 

It is worth noting that a coordinated-attack graph has no loops. 
After all, nobody plans to take an action that has no effect. Since 
our plans are deterministic, there are no cycles, either. A con- 
tingency plan, however, may have cycles representing recoveries 
(backtracking, for example) from partial failures. 

Each coordinated-attack plan is linear, since it induces a total or- 
der on the set of states. In Figure 3, the total order is represented as 
a chronological time line starting with the initial state so, followed 
by intermediate states and the final state s5. 

4. ATTACK GRAPH FOR COORDINATED 
ATTACKS 

It is often the case that a group of attackers comes up with dif- 
ferent plans for achieving their goals, and it is up to the group to 
choose which plan to follow. To evaluate system vulnerability, a se- 
curity analyst needs a model of possible attacks. An attack model 
can also facilitate model-based intrusion detection, in which alerts 
are matched against the model to discover attackers' coordination 
patterns. 

DEFINITION 4. An adversary's instrumental capacity, (AS,  n ), 
is represented by: 

• A S :  The actions available to attackers. 

• n: The maximal number of  attackers participating in an at- 
tack. 

The notion of adversary's instrumental capacity covers knowledge, 
skill levels, and tools available to attackers. In this paper, we con- 
sider homogeneous groups of attackers, i.e., groups of equally skilled 
and knowledgable attackers. In other words, if an attacker can ac- 
complish a task, so can any other member  of the group. Apparently, 
attackers share knowledge, tools, and even teach one another time 
permitting. The homogeneity assumption also applies for software 
agents acting on behalf of human attackers. A software agent can 
easily replicate and launch new copies of itself. 

Homogeneous attackers can benefit in many ways from cooper- 
ation. For example, in order to make an attack short, independent 
subtasks can be assigned to different attackers. In some cases, ho- 
mogeneous attackers can cooperate to avoid detection (parallel port 
scanning). It is also possible that some steps of an attack may re- 
quire a joint action that is beyond the power of a single attacker. 

Note that the notion of instrumental capacity does not cover at- 
tackers' decision-making skills. Different groups of attackers can 
utilize the set of available actions A S  in different ways, some groups 
making more efficient use of actions than others. 

DEFINITION 5. A coordinated-attack graph is the union of  all 
coordinated-attack plans, which for a given adversary's instrumen- 
tal capacity (AS,  n), reach a goal state s, s E SG, when applied 
to the current state So. More formally, a coordinated-attack graph 
is: 

C A G  : (V, E ,  o~, So, So ,  AS ,  n) 

where (V, E)  is a multigraph of  system state transitions. Each node 
v E V, V _C S, represents a system state, and each arc a, a E AS ,  
represents an attocker's action. The action set A S  is the set of  
all actions available to attackers, and n is the maximal number of  
attackers that can participate in the attack. So is the current state, 
and SG are the goal states, a is a labelling which associates each 
arc with an action in AS .  
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alo: U1 logs in a l l :  U1 creates sym a12:U1 opens F1 
link F1 Dointinq to F2 

2 a20: u2 logs in a21:u2 no-op a22:u2 no-op a 3: U2changes sym a24:u2 no-op 
link F1 to point to TF 

Figure 3: Coordinated-attack plan 

As shown, a coordinated-attack graph is the union of all coordinated- 
attack plans that can reach the goal G, i.e., the plans having a final 
state in Sa .  A coordinated-attack plan can be automatically gener- 
ated by any sound and complete planning algorithm that allows for 
concurrent actions, such as POME A planning algorithm is sound 
if it generates only plans that are guaranteed to achieve the attack- 
ers' goals. A complete algorithm is guaranteed to generate a plan, if 
a successful plan exists. Obviously, a complete planning algorithm 
can iteratively generate all existing plans, by disabling previously 
generated plans. 

Figure 4 is an example of a coordinated attack graph. The lower 
branch of the attack graph represents the race condition attack dis- 
cussed above. The upper branch represents a similar attack called 
directory race cognition [ 10]. The dotted lines in Figure 4 are used 
to join concurrent links. That is, the two links leaving node so are 
concurrent, whereas the two links leaving sl represent a decision 
choice in which attackers have to chose from two available attack 
continuations. 

Coordinated-attack graphs represent a semantic model of a sys- 
tem and can facilitate a wide range of tasks, such as model check- 
ing, opponent modelling, intrusion response, sensor configuration, 
and so forth. For example, a security feature of a system can 
be proved using standard model-checking techniques. Current re- 
search on planning as model checking allows one to check a plan 
for its correctness, or to validate a property of a system written in 
Computation Tree Logic (CTL)[12]. 

There has been a lot of research on planning and concurrent plan- 
ning. And yet surprisingly, we could not find an efficient imple- 
mentation of a concurrent planner. POMP-based planners [2], for 
example, fail to handle large state-action spaces. The exponen- 
tial size of the action-space state could eventually be handled by 
model-checking planners, such as UMOP [14] and MBP [1] which 
make use of Ordered Binary Decision Diagrams (OBDD). OBDD's 
are very compact and efficient representations of the assignments 
satisfying'a given boolean formula. Planners using OBDD could 
handle state-action spaces of magnitude 102o and higher [18]. Un- 
fortunately, neither MBP nor UMOP allow for concurrent planning. 

Ohe major problem with all existing planning and model-checking 
systems is that they do not exploit action interdependencies to prune 
the state-action space. For example, a planning system would search 
for all possible action combinations applicable in a given state. The 
situation is further exacerbated, by the exponential growth of the 
number of states. 

Concurrent actions might depend on one another in that an ac- 
tion execution might require the concurrent execution of another 

action. Such a dependence helps avoiding some futile search and 
increase planning efficiency. For example, if an action is not ap- 
plicable in a state, neither are the actions depending on it. That is, 
all actions that require the concurrent execution of the given action 
can be discarded. Action dependencies can be detected efficiently 
in polynomial time, and all inapplicable actions could be discarded, 
thereby significantly reducing the search space. 

In this paper, we propose a method for pruning the size of coor- 
dinated attack graphs. The method uses a data structure, the action- 
dependence graph, to explicitly represent dependencies and inter- 
action between concurrent actions. 

DEFINITION 6. For a given adversary's instrumental capacity 
(AS,  k ), an action-dependence graph is a graph-based represen- 
tation of  the action set AS ,  where each action is represented by a 
node. A link is drawn from node al to node a2 iff a2 belongs to the 
concurrent list of action al, i.e., the execution of al requires the 
execution of a2. 

The fact that the execution of action al  requires the concurrent 
execution of a2 can be viewed as a dependence of al  on a2, i.e., 
action al  cannot be executed unless a2 is concurrently executed. 
Dependence is not a symmetric relation. In Figure 3, for example, 
action a12 depends on a23. In other words, userl cannot openfile 
unless user2 concurrently changes the symbolic link. The reverse, 
however, is not true. An example of an action-dependence graph is 

(o) 

Figure 5: Action-dependence graph 

shown in Figure 5. In this case, action a l  requires the concurrent 
execution of actions a2 and q3. Action a2 requires action a4, and 
so forth. 

47 



a12:U1 opens . . / . . /etc/File 

°% **** 

alo: U1 logs in 

a',: u2 oo-op 
_ _ ~ ~ r t o  . . . . . . . . . . . . . . .  t i ~ e  

F 1 - F  e ~  

F2 - File 2 a 2 6 : u 2  no-op a27: u2 changes a28: u2 no-op 
TF - Target File 
Sym link - Symbolic Link sym link F1 to point to 

TF 

Figure 4: Coordinated-attack graph 

The action-dependence graph in Figure 5 suggests that some ac- 
tions are more "costly" than other actions. For example, if actions 
a2 and a4 can achieve the same goal, there is no point in using a2. 
If a2 is to be used, then it requires a4, which by itself is sufficient 
for achieving the goal. This bring us to the following observation. 

OBSERVATION 1. Minimum concurrency: A set of  attackers 
tries to achieve their goal with minimal sets of  concurrent actions. 

Put formally, 

DEFINITION 7. A set of  concurrent actions Z is irreducible, if  
no proper subset of  Z has the same effect as Z. 

In other words, there is no point in using a large set of concur- 
rent actions if  a smaller subset can achieve the desired effect. There 
are several reasons for choosing a small set of concurrent actions at 
each stage of an attack. First, small action sets could decrease the 
cost of each stage, and therefore the total cost of an attack. Sec- 
ond, choosing more actions requires satisfying more preconditions, 
unnecessarily increasing the complexity of an attack. Third, small 
action sets can be carried out by a small number of attackers. 

The action-dependence graph in Figure 5 shows that actions a4, 
as, and a6 are independent. That is, each of them can be executed 
on its own. The same cannot be said, however, for actions at ,  a2, 
and a3, all of which depend on other actions. Intuitively, actions 
a t ,  a2, and aa have different degrees of dependence. For example, 
action at  requires the execution of two other actions, while action 
a2 requires only one. More formally, 

DEFINITION 8. The degree of  dependence of  action a is: 

d(a) = {0m + 1 otherwise.ifacti°naisindependent' 

where m is the maximal degree of  dependence of  immediate suc- 
cessors of  a. 

Definition 8 is only applicable to acyclic action-dependence graphs. 
To apply it to cyclic graphs, we need to transform the initial graph 
to an acyclic one in which every node corresponds to a maximal 
strongly connected components of the initial graph. The degree 
of dependence of a node in the original graph is then defined as 
the degree of dependence of the strongly connected component to 
which that node belongs. 

In Figure 5, the degree of dependence is shown in parenthesis 
next to each action. An action-dependence graph and degrees of 
dependence can be computed in polynomial time using standard 
graph algorithms. In Figure 6, we present the DBCP (Dependency- 
Based Concurrent Planning) algorithm, which makes use of an action- 
dependence graph to prune the search space. The algorithm has 
four input variables: the set A of all joint actions inserted into the 
plan so far, the current subgoal Subgoal, the set of available ac- 
tions AS ,  and the set of available agents n. Subgoal is a list of 
preconditions that have not been achieved. At the beginning, it is 
initialized to the goal G. The algorithm works backwards. That 
is, it starts with the goal preconditions and tries to satisfy them by 
choosing appropriate actions, which" in turn requires satisfying new 
preconditions, and so forth, until all preconditions are satisfied or 
cannot be satisfied, given the set of available actions A S  and num- 
ber of agents n. At each step DBCP chooses a minimal action set 
that satisfies a subgoal, thereby reducing both the cost of search and 
the total cost of the plan. 
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DBCP(A, Subgoal, AS, n) 
A+-- O 
AvailableAttackers~-- n 
Satisfied~-- 0 
while (Subgoal ~ 0) and (AvailableAttackers > 0) 
do 

choose Precondition Q from Subgoal 
choose action A~ad from AS with minimal dependence that 

brings about Q 
If  Aadd does not exist then return failure 
Satisfied*-- Satisfied U Q 
JointAction ~ A~da 
Subgoal~-- Subgoal - Q 
AvailableAttackers ~-- AvailableAttackers - 1 
for each Postcondition P in Aaad 

if P ~ Satisfied then Satisfied ~-- Satisfied U P 
for each action Acon on which action Aaaa depends 
do 

Flag ~-- false 
for each precondition P in Acon 
do 

if (P ~ Q) and ( P  ~ Satisfied) then 
do 

Q ~ - - Q u P  
Flag ~- true 

enddo 
enddo 
if (Flag) then 
do 

if  (AvailableAttackers = 0) then return failure 
else AvailableAttackers ~-- AvailableAttackers - 1 

JointAction ~-- JointAction U Acon 
enddo 

enddo 
A ~- A u JointAction 

enddo 
if Subgoal = 0 then return A else return failure 

Figure 6: Dependency Based Concurrent Planning (DBCP) al- 
gorithm 

5. VULNERABILITY ANALYSIS FOR CO- 
ORDINATED ATTACKS 

Planning used for model checking has proved to be practical and 
general enough to tackle a wide range of problems [12]. Efficient 
planning algorithms (including OBDD-based algorithms) can gen- 
erate plans automatically and deal with large problem spaces. Us- 
ing planning for vulnerability analysis has several advantages: 

• It provides a uniform approach to both system and adversary 
modelling. 

• When a security property is invalidated by a planner, the 
planner produces a coordinated-attack plan that can be used 
by attackers to synchronize their actions. Moreover, a com- 
plete planner can generate all plans invalidating the secufty 
property. Knowing the attackers' plans can help a security 
analyst to prevent attacks and plan incident response. 

• A coordinated-attack model can be used for a model-based 
intrusion detection which looks for specific coordination pat- 
terns between users' activities, 

• Planning can help not only vulnerability analysis, but also 
robotic attacks in which several intelligent agents automati- 
cally produce and launch a coordinated attack. 

To perform plan-based model checking, we use the adversary's 
instrumental capacity (AS, n) as a system model, LPG as a com- 
plete and sound planner [11], and a specification of the security 
property p written in CTL. Unlike other system models implemented 
as a finite state transition system, our model is parametric: it de- 
pends on the number of available attackers, n. For different n, the 
planner will generate different transition systems. At first sight, 
it seems unusual that the system model depends on an exogenous 
parameter, n. On the other hand, it is quite natural to evaluate a 
system against different attack scenarios. For example, a system 
which is safe for a given set of actions AS and a given number of 
attackers n, might not be safe for the same action set AS and n + 1 
attackers. 

In our case, model-checking works as follows. For a given safety 
property p written in CTL, we generate the set of all states where p 
holds: 

States(p) = {s E S,p E L(s)} 

Then, we set the goal states S c  = States(p). Finally, we run the 
planner with AS, n, Sc  as input variables. A complete planner is 
guaranteed to generate a plan (if such a plan exists) starting at the 
current state So and reaching one of the goal states s, s E So.  The 
existence of a plan invalidates the security property p, while the 
non-existence validates it. Note that a property is always checked 
for a fixed set of actions AS, and the maximal number of attackers. 

6. IMPLEMENTATION 
In this section, we show how the race condition attack shown in 

Figure 3 can be modelled and analyzed using Planning Domain 
Description Language, PDDL, and implemented in LPG (Local 
search for Planning Graphs) [ 11 ]. We have chosen the latest version 
PDDL 2.1 used in the Third International Planning Competition in 
2002 [9]. PDDL 2.1 is a versatile description language capable of 
expressing temporal and numerical properties of planning domains 
[81. 

Before choosing LPG, we studied the applicability of several 
planners to the coordinated attack domain. A major challenges 
was the representation of concurrent actions. Initial attempts to 
model the coordinated attack domain using non deterministic plan- 
ners, such as MBP [ 1 ], failed. One of the major drawbacks of MBP 
is its inability to support temporal and numerical features of ac- 
tions, such as action duration and the invariants that must hold over 
the duration. In PDDL, a durative action is represented by two 
atomic actions corresponding to the end points of the durative ac- 
tion. PDDL also allows for concurrent execution of actions, pro- 
vided that the end-points of one action do not interact with the end 
points or with the invariants of another action. 

LPG uses a compact representation of a planning graph to define 
a search neighborhood and to evaluate its elements using a parame- 
terized function. The function assigns weights to different types of 
inconsistencies in the current plan, and dynamically evaluates them 
during search, using discrete Lagrange multipliers. Whereas most 
of the current planners estimate plan quality based on the number 
of actions exclusively, LPG also takes into account the execution 
cost of an action. LPG uses this information to produce plans of 
good quality by minimizing an objective function which includes 
the overall execution cost of a plan. [11]. 

We modelled the coordinated-attack domain with PDDL 2.1 and 
used LPG to generate plans. The domain model is the following. 
Two users (user1 and user2) simultaneously log on to a system, 
both having access rights to file f l ,  which is a symbolic link to 
file f2 .  User1 executes open_file with f l  as argument. In the 
meanwhile, user2 removes the symbolic link from f l  to f 2  and 
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;; Version LPG-vl .0 ;; Seed 100348977 
;; Command line: ./lpg -o attack_domain.pddl -f attack_problem -n 
1 
;; Problem: attack_problem 
;; Search time: 0.050 Parsing time: 0.010 Mutex time: 0.000 
;; Actions: 5 Execution cost: 5.000 Duration: 9.000 

0.001: 
0.002: 
2.003: 
3.004: 
4.005: 

(LOG_USER1 U2 F1 TF)[2.000] ;; cost 1.000 
(LOG_USER2 U1 F1 TF)[2.000] ;; cost 1.000 
(OPEN_OPENFILE U2 F1 TF)[1.000] ;; cost 1.000 
(CHANGEJANK U1 F1 TF)[1.000] ;; cost 1.000 
(CLOSE_OPENFILE U2 F1 TF)[5.000] ;; cost 1.000 

Time 60 

Figure 7: LPG-generated attack plan for the race condition do- 
main 

creates a new symbolic link f l  to the target file t f ,  which could be 
/etc/shadow, for example. As a result, user1 opens the target file 
t f  which he is not authorized to access. 

To succeed in the attack, attackers' actions must be synchro- 
nized. For example, action open_file must be executed first, and 
change_link must be executed after open_file has started, but be- 
fore it finishes. 

The attack domain consists of 5 durative actions which cause 
transitions (defined as a single action or a combination of actions) 
between states in the attack graph. We modelled open_file as a com- 
plex action consisting of two atomic actions open_open f i le and 
close_open file. First, open_file starts with open_open f i le rais- 
ing a signal which is captured by change_link and used as a precon- 
dition for starting change_link. This guarantees that change_link 
can start only after open_openfile has started . After finishing, 
change_link raises another flag which is used as a precondition for 
close_openfile to finish. In other words, we used temporal synchro- 
nization constraints (that hold at the start and end of the action) to 
ensure that change_link is executed between the start and the end 
of open_file. 

The plan generated by the LPG planner for the race-condition 
attack is shown in Figure 7. The PDDL 2.1 code for the attack 
domain, attack problem, and the output of the planner are included 
in Appendix A for reference. 

In Figure 7, the second logging operation is executed at moment 
0.002, whereas the first logging starts at 0.001. The difference is 
due to the fact that the actions will always be sequential unless 
executed in parallel processing environments. 

7. CONCLUSIONS 
In this paper we defined the notion of coordinated-attack graph, 

proposed an algorithm for efficient generation of coordinated-attack 
graphs, demonstrated how coordinated-attack can be used for vul- 
nerability analysis, and discussed an implementation of a coordinated- 
attack graph. 

Coordinated-attack graphs can facilitate an wide range of tasks, 
such as model checking, opponent modelling, intrusion response, 
sensor configuration, and so forth. 

There are several open directions for future research: automatic 
intention recognition for coordinated attacks, adversafial planning, 
automatic sensor configuration for detecting coordinated attacks, 
etc. Solving all these problems will help improve systems security 
against coordinated attacks. 
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APPENDIX 
A PDDL 2.1 code for the attack domain 

(define (domain attack_domain) 
(:requirements :strips :equality :typing :fluents :durative-actions) 

(:types users files slink) 
(:predicates 

(loggedl ?u - users) (logged2 ?v - users) 
(access ?u - users ?f-  files) 
(opening ?p - files) 
(opened ?q - files) 
(sym_link ?x -files ?y - files) 

) 
(:durative-action log_user 1 

:parameters (?r - users ?f-  files ?g - files) 
:duration (= ?duration 2) 
:condition (at start (not (loggedl ?r))) 
:effect (and 

(at end (loggedl ?r)) 
(at end (access ?r ?f)) 

) 
) 

(:durative-action log_user2 
:parameters (?r - users ?f-  files ?g - files) 
:duration (= ?duration 2) 

:condition (at start (not (logged2 ?r))) 
:effect (and 

(at end (logged2 ?r)) 
(at end (access ?r ?f)) 

) 
) 

(:durative-action open_openfile 
:parameters (?r - users ?f - files ?g - files) 
:duration (= ?duration 1) 
:condition (and (at start (loggedl ?r)) (at start (access ?r 

?t))) 
:effect (at end (opening ?f)) 

) 

(:durative-action change_link 
:parameters (?l - users ?s -files ?t - files) 
:duration (= ?duration 1) 
:condition (and (at start (logged2 ?1)) (at start (opening ?s))) 
:effect (at end (sym_link ?s ?t)) 

) 

(:durative-action close_openfile 
:parameters (?r - users ?f-  files ?g - files) 
:duration (= ?duration 5) 
:condition (and (at start (loggedl ?r)) (at start (access ?r ?f)) 

(at start (opening ?f)) (at start (sym_link ?f ?g))) 
:effect (and 

(at end (opened ?g)) 
) 

PDDL 2.1 code for the attack domain 

(define (problem attack_problem) (:domain attack_domain) 
(:objects 

u l - users 
u2 - users 
f l  - files 
t f -  files 

) 
(:init 

(not (loggedl ul))  
(not (loggedl u2)) 
(not (logged2 u 1)) 
(not (logged2 u2)) 

) 
(:goal 

(opened tf) 
) 
(:metric minimize (total-time))) 
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