
Representation and Analysis of Coordinated Attacks

Sviatoslav Braynov and Murtuza Jadliwala
Department of Computer Science and Engineering

University at Buffalo
Buffalo, NY 14260

{sbraynov, msj3} @ cse.buffalo.edu

ABSTRACT
In this paper, we propose a formal model of coordinated attacks
in which several attackers cooperate towards a common malicious
goal. The model investigates both attack planning and vulnerabil-
ity analysis, thereby providing a uniform approach to system and
adversary modelling. In addition, the model is general enough to
explain both coordinated and single attacks.

In the paper, we define the notion of coordinated-attack graph,
propose an algorithm for efficient generation of coordinated-attack
graphs, demonstrate how coordinated-attack can be used for vul-
nerability analysis, and discuss an implementation of a coordinated-
attack graph.

Coordinated-attack graphs can facilitate a wide range of tasks,
such as model checking, opponent modelling, intrusion response,
sensor configuration, and so forth. In addition, they can be used in
robotic warfare, where several intelligent software agents automat-
ically produce and launch coordinated attacks.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification - -
formal methods, model checking

General Terms
Security

Keywords
Coordinated attack, attack graph, adversary modelling, attack plan,
model checking

1. INTRODUCTION
Organized attacks aiming at disrupting critical infrastructure are

usually beyond the power of a single attacker. To achieve their
goal, several attackers cooperate by resource sharing, task alloca-
tion, and synchronization. Coalitions of malicious attackers may
include both human and artificial agents, i.e., intelligent software
agents acting on behalf of humans. A recent CERT report [13] con-
cludes that modern attack tools are rapidly evolving and becoming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FMSE'03, October 30, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113 -781-8/03/0010 ...$5.00.

more sophisticated. Unlike early attacks, launched by a single at-
tacker to a single victim, recent attacks are better coordinated and
difficult to discover. A notorious example is the October 23rd at-
tack on DNS root servers [20].

Most literature on distributed attacks has traditionally focused on
distributed denial of services (DDoS), in which an attacker breaks
into several machines, or joins other attackers to simultaneously
attack a target host or network. A distributed attack, however, is
a very simple form of coordinated attack, where many intelligent
attackers coordinate in real time. Given the present state of coor-
dinated attacks, we could expect new and more damaging patterns
of distributed attacks in the near future. Our concern is that cur-
rent attack patterns have not utilized the full potential for real time
coordination and cooperation.

In our previous research [5], we identified several problems with
coordinated attacks:

• Coordinated attacks could be designed to avoid detection.
Many defense technologies can be easily defeated by a so-
phisticated coordinated attack capable of breaking the attack
pattern into many apparently innocent pieces. Think of the
following example. Consider a large crowd (users, processes,
hosts, threads) with few attackers hiding inside it and execut-
ing a coordinated attack plan. Due to the large crowd, it is
practically impossible to discern individual attackers many
of which could be performing apparently innocuous actions.
Once the attack succeeds it is clear who the attackers are, but
at this point it is too late to make a difference.

• It is difficult to differentiate between decoy and actual
attacks. Consider the case where members of a malicious
group launch several simultaneous attacks on a system. In
order to mislead the intrusion response system, all but one
of these attacks are designed to be decoy. That is, they are
launched for the sole purpose of distracting the intrusion re-
sponse system and consuming its resources. Decoy attacks
may have different goals. They could: create many simul-
taneous alerts in order to mislead or confuse the IDS; waste
system response time on decoy goals; or perform a DoS at-
tack on the IDS.

• There is a large variety of coordinated attacks. Attackers
may attack single or multiple victims. Some attacks could be
automatically replicated or duplicated, thereby accumulating
more power. Other attacks may be supporting, i.e.,launched
in parallel with the main attack, with the aim of providing
auxiliary functionality such as cover-up, back-up, trace re-
moving, etc.

Although the paper discusses primarily insider attacks, the mod-
els presented are general enough to be applied to a wide range of
scenarios including insider, outsider, and mixed attacks.

43

Since the actions of different attackers interact, we cannot spec-
ify the effects of an individual attacker's action without taking into
account what actions might be performed by other attackers at the
same time. It is often the case that the effect an action is modi-
fied by another action executed concurrently by another attacker.
In other words, the result of a joint action, executed simultaneously
by several attackers, could go beyond the sum of individual actions.

Current research on vulnerability analysis, including graph-based
systems [22, 24, 17, 15, 16, 23] and correlation-attack languages
[7, 21, 26], has mainly focused on serial attacks, i.e., sequences of
atomic actions leading to a security breach. Although correlation
analysis has been applied to analyze relationships between different
ongoing attacks, little attention was paid to correlating individual
actions across users in order to identify a single attack. In a coordi-
nated attack, attackers' actions interfere with one another, making
it difficult to analyze an action out of the context of other actions.
Consider, for example, two legitimate users with different access
rights. While the first user has access to sensitive data, and no ac-
cess to an external network, the second user has external network
access, and no access to sensitive data. The users could collude
and launch a coordinated insider attack. They could first establish
a covert channel between them, and then let the system leak sen-
sitive information. In this case, most intrusion detection systems
would detect an authorized access to sensitive data and an autho-
rized network access, without being able to correlate them.

The simplest way to handle interactions between concurrent at-
tackers' actions is to consider each joint action as an atomic action,
i.e., to consider the group of attackers as a single attacker. Specifi-
cally, if A~ denotes the actions available to attacker i, then the joint
action space is A1 x A2 x ... × An. That is, a joint action is a
combination of all individual actions taken at the same time. One
may see each element of the joint action space as an atomic action,
and specify its effect using existing specification languages such as
STATL [21] and P-BEST [7]. The main advantage of this reduc-
tion is that vulnerability analysis can be performed using available
methods and tools. Such an approach, however, has some seri-
ous disadvantages as far as expressiveness is concerned, as well
as ease of representation and analytic power. First, the number of
joint actions increases exponentially with the number of attackers
(assuming that each attacker can execute at most one action at a
time). This leads to a super-exponential blowup of specification
and system models. Second, this reduction fails to account for the
interaction between attacker's actions, and thereby to provide data
for further correlation analysis. Third, it fails to exploit the fact
that many attackers'actions may not interact at all, or interact un-
der some conditions only.

In this paper we propose a formal model of coordinated attacks
in which several attackers coordinate their actions to achieve the
common goal of compromising a computer or network system. A
distinctive feature of the model is its ability to account for concur-
rent interdependent attackers' actions. In a concurrent-action at-
tack, each individual action can bring about the desired effect only
if properly coordinated with other actions which could be concur-
rently or sequentially applied.

The paper is organized as follows. Section 2 introduces a for-
mal model of concurrent systems. Section 3 defines the notion of
coordinated attack plan. Section 4 discusses how several attack
plans may combine into a coordinated-attack graph. The section
also presents an efficient algorithm for generating attack graphs.
Section 5 illustrates how coordinated-attack graphs can be used for
vulnerability analysis. Finally, Section 6 discusses an implementa-
tion of a coordinated-attack graph.

2. F O R M A L F R A M E W O R K
In this section, we describe a model of coordinated attacks that

accounts for synergy and coordination among attackers.

1. S is a finite set of system states

2. So C S is a set of initial sets

3. System states are truth assignments to ground atomic formu-
lae. A state is represented as a set (or conjunction) of those
ground atomic formulae that are true in the state. For exam-
ple, the state in which userl has logged and accessed filel is
represented as:

logged(user1) A accessed(user1, f i lel)

This implies the closed world assumption, i.e., every atomic
formula not listed in a state evaluates to FALSE.

4. A~ is the set of actions available to attacker i. The joint action
space is A = A1 x A2 x ... x An. That is, each joint action
d = (a l , a2, ..., an) , ai C Ai, is a combination of individual
actions performed by each of the attackers. Throughout this
paper, we assume that an attacker can perform at most one
action at a time. Some of the actions could be e, a null or
no-op action. We assume that e E A~ for i = 1, ..., n. In
other words, some attackers could be idle at some stages of
the attack.

5. T C S × A × S is a trinary relation, the transition rela-
tion, which gives possible transitions between states. That is,
T(sl, ~, s2) describes a transition from state Sl to s2, if joint
action ~ is taken in state s l . In this paper, we constrain our
attention to deterministic transitions. The model can easily
be generalized to handle nondeterministic actions by intro-
ducing a probability distribution on the space of resulting ac-
tions. Note that the joint action ~ is not an atomic action, but
a vector of individual actions, each defined separately. Since
the effects of the concurrent actions applied to s l interfere,
the resulting state s2 is determined by all concurrent actions.

6. G is the attackers' goal, i.e., a first-order formula describing
a compromised system state. So , SG C S is a set of system
states in which the goal is satisfied. Note that, G could be a
complex goal consisting of several concurrent goals. In this
case, it could be represented as a conjunctive lists of formu-
las.

For the ease of notation, each action is described by a generic ac-
tion schema specifying: who is performing the action, what are the
action preconditions, what other actions must be performed concur-
rently, and what is the final effect of the action. Figure 1 describes
the format of an action schema. In a schema, action preconditions
specify which atomic formulae must be true in the current state of
the system in order to apply the action. The postconditions specify
which atomic formulae become true and which become false after
the action is executed. The concurrent list specifies other actions
that must be simultaneously executed or not executed for a given
action to have its intended effect. To specify a concrete action, all
free variables in a schema must be bound to constants. In other
words, every action is a fully instantiated action schema. We as-
sume that conjunctive lists, pre- and postconditions are consistent,
i.e., jointly satisfiable. That is, there exists at least one variable
assignment that satisfies them in at least one system state. For ex-
ample, a concurrent action list must not require that a particular
action be applied and not applied at the same time in a given state.

44

action <first-order predicate>
:parameters

<list-of-free-variables>
:preconditions

< conjuctive-list-of-predicates >
:concurrent <conjuctive-list-of-action-names>
:postconditious <conjuctive-list-of-predicates>

Figure 1: Action schema

An action (a fully instantiated action schema) can be executed
only if it's preconditions are true. After the action execution, the
system state is changed in the following way. All positive literals
from postconditions are added into the state description while all
negative literals are removed. For example, if executed in state

logged(user1) A accessed(user1, f i le1)

a logging off action with a postcondition not(logged(user1)) will
change the current state to

accessed(user1, f i l e l))

Our action representation significantly differs from representa-
tions used in attack graphs. First, it allows for free variables, thereby
allowing an action schema to present a whole class of instant ac-
tions. When an action schema is instantiated, all variables must
be bound to constants. Second, it allows for concurrent actions,
and explicitly describes action dependence. Synchronization and
coordination among attackers is captured by the concurrent action
list. It specifies what actions must be executed concurrently in or-
der to enable positive synergy, and what action combinations are
prohibited in order to avoid negative synergy. That is, some actions
must be taken (for positive synergy) or must not be taken (for neg-
ative synergy) in order for a given action to have its intended effect
specified by postconditions. Since an attacker can perform at most
one action at a time, all concurrent actions must be performed by
different attackers.

Figure 2 represents two concurrent actions corresponding to a
symbolic link race condition [10]. In this attack, two insiders, user1
and user2, cooperate in order to gain access to file, which they are
not authorized to access. User1 creates symbolic link file1 pointing
to file2. We suppose that user1 has access to read and write both
file1 and file2. After establishing the symbolic link, user1 calls
open(filel, O_RDWR). The system resolves the symbolic link and
checks that access to file2 is allowed. Meanwhile, user2 changes
the symbolic link file1 to point to file. As a result, the system exe-
cutes open(file, O_RDWR), granting user1 access to file.

The intended semantics of an action scheme is captured by the
following definition.

DEFINITION 1. A joint action ~ = (al , a2, ..., a,~), ai E Ai, a
combination of individual actions, is consistent in the current state
sift."

• The preconditions of all individual actions are jointly logi-
cally consistent in s. That is, the conjunction of all atomic
formulae in precondition lists evaluates to TRUE in s.

• The postconditions are jointly consistent in s. That is, there
are no two actions such that the first one brings about a
ground atom while the second action brings about the nega-
tion of that atom. In other words, action effects do not con-
flict with one another.

action open(user 1,file,O_RDWR)
:parameters

userl, file, filel, file2
:preconditions

can-access(userl, file 1,O_RDWR)A
can-access(userl, file2,O_RDWR) A
symbolic-link(file 1,file2)

:concurrent change-link(user2, file 1, file)
:postconditions opened(user, file, O_RDWR)

action change-link(user2, filel, file)
:parameters

user2, file, filel
:preconditions

can-access(user2, filel,O_RDWR)
:postconditions symbolic-link(filel,file)

Figure 2: Action description

• Each action aj mentioned in the concurrent list of some ai
belongs to the joint action. In other words, it is executed by
some other attacker j , different from i.

• The negation of action aj, mentioned in the concurrent list o f
some ai, does not belong to the joint action. In other words,
no other action negatively interferes with ai.

If a joint action ~ is consistent in s, then it can be executed in that
state. This results in a concurrent execution of several actions. The
resulting state is obtained by adding all positive literals and delet-
ing all negative literals from the postcondition lists of concurrent
actions.

3. A COORDINATED ATTACK PLAN
In an adversarial environment, the best defence strategy depends

on what the defendant believes about the attacker's strategy, which
in turn depends on what the attacker believes about the defendant
strategy, and so forth, leading to an infinite recursion of beliefs. In
game theory and artificial intelligence, several methods have been
proposed to represent and reason about adversaries [6]. Current
research on vulnerability analysis usually represents an information
system only from the perspective of the security analyst, thereby
missing the other part of the equation. As Sun Tzu puts it in his
treatise on the art of war [25]: "If you know the enemy and know
yourself, you need not fear the result of a hundred battles. If you
know yourself but not the enemy, for every victory gained you will
also suffer a defeat."

In this section, we propose a formal model of coordinated at-
tacks which can serve both as a semantic model of a concurrent
computer (or network) system and as a planning model for a group
of attackers. That is, the model incorporates the viewpoints of both
the security analyst and the attackers. This is quite a natural ap-
proach, given that an attacker usually launches an attack based on
a model of the system, and the system analysts evaluates a model
against a set of possible attacks. In addition, the model is general
enough to explain both coordinated and single attacks.

The semantics of individual actions in coordinated attacks is dif-
ferent from their semantics in individual attacks. In coordinated
attacks, it is not individual actions that transform one state of the
system into another. Rather, the state transitions are triggered by
joint actions concurrently executed by several attackers.

45

DEFINITION 2. An individual plan pi for attacker i is a se-
quence of actions

i i i
p~ = (a 0 (s o) , a 2 (s l) , , a k(Sk))

where action aij (sj) is executed in state sj by attacker i.

An individual plan is deterministic in the sense that each attacker
knows what action to execute at every state of the system. At first
sight, this might seem a limiting assumption since attackers are usu-
ally prepared to react to unforeseen failures and contingencies. For
example, attackers often employ contingency plans that allow them
to recover from unexpected accidents. Such scenarios traditionally
fall in the domain of contingency planning [19, 3]. Using standard
methods from contingency planning, the model presented in this
paper can easily be extended to include conditional actions.

We assume that the system state is accessible for attackers in the
sense that they have the knowledge and the skills to differentiate
between the states in the attack plan. This assumption prevents
miscoordination caused by inability of an attacker to correctly de-
termine the present state of the system. By this, we do not as-
sume that attackers have complete knowledge of every situation
they could encounter. First, attackers need to differentiate between
attack-relevant states, not between all possible states. Second, in
order to differentiate between relevant states, attackers need only
to know or discern some distinctive features of the states.

If we combine all actions executed at a certain stage of the attack
j , j : 1, ..., k, we obtain the attackers' joint action at that stage.
It is natural to define a coordinated attack plan as a sequence of
attackers' joint actions.

DEFINITION 3. A coordinated-attack plan P for a group of at-
tackers G is the union of coordinated individual plans of the mem-
bers of the group. The coordination between attackers is specified
at action level trough precondition and concurrent conditions.

That is, a coordinated-attack plan P is a sequence of joint actions:

p : (a 0 (s 0) , a l (s l) , , a k (s k))

where a joint action aj (s j) , taken in state sj , is defined as the com-
bination of all concurrent actions executed by each attacker in sj :

a j (s j) : (a l j (s j) , a2y (s j) , ..., ann(s j))

Every coordinated-attack plan starts in the current state so and
finishes in some final state where the attackers's goal (or goals) is
achieved, i.e., the system security is compromised. The plan speci-
fies what action has to be taken by each agent in each state, in order
to reach the goal state. At first sight it may seem counterintuitive
that the attackers' goal is always satisfied in the final state. The
goal of planning, however, is to plan for success. After all nobody
plans for failure. Whether or not a plan will succeed depends on
the validity of its assumptions.

A coordinated-attack plan can be conveniently represented as
a directed and acyclic multigraph where nodes represent system
states and arcs correspond to actions. All arcs leaving a node rep-
resent actions concurrently started at that node. Similarly, all arcs
pointing to a node represent actions concurrently finished at that
node. The intended meaning is that all arcs between two nodes
must be traversed concurrently (by different attackers), in order to
move the system from the first to the second state. Figure 3 shows a
coordinated-attack plan for the race condition example. The attack-
ers' goal is to open file ~, which they are not authorized to access.
They start in the initial state so and achieve their goal of opening
t f in s5. Note that, in order to move the system from state s2 to
s5, userl's action a12 has to be concurrently applied with user2's

actions a22, a23, and a24. That is, links connecting s2 and s5 must
be traversed concurrently.

It is worth noting that a coordinated-attack graph has no loops.
After all, nobody plans to take an action that has no effect. Since
our plans are deterministic, there are no cycles, either. A con-
tingency plan, however, may have cycles representing recoveries
(backtracking, for example) from partial failures.

Each coordinated-attack plan is linear, since it induces a total or-
der on the set of states. In Figure 3, the total order is represented as
a chronological time line starting with the initial state so, followed
by intermediate states and the final state s5.

4. ATTACK GRAPH FOR COORDINATED
ATTACKS

It is often the case that a group of attackers comes up with dif-
ferent plans for achieving their goals, and it is up to the group to
choose which plan to follow. To evaluate system vulnerability, a se-
curity analyst needs a model of possible attacks. An attack model
can also facilitate model-based intrusion detection, in which alerts
are matched against the model to discover attackers' coordination
patterns.

DEFINITION 4. An adversary's instrumental capacity, (AS, n),
is represented by:

• A S : The actions available to attackers.

• n: The maximal number of attackers participating in an at-
tack.

The notion of adversary's instrumental capacity covers knowledge,
skill levels, and tools available to attackers. In this paper, we con-
sider homogeneous groups of attackers, i.e., groups of equally skilled
and knowledgable attackers. In other words, if an attacker can ac-
complish a task, so can any other member of the group. Apparently,
attackers share knowledge, tools, and even teach one another time
permitting. The homogeneity assumption also applies for software
agents acting on behalf of human attackers. A software agent can
easily replicate and launch new copies of itself.

Homogeneous attackers can benefit in many ways from cooper-
ation. For example, in order to make an attack short, independent
subtasks can be assigned to different attackers. In some cases, ho-
mogeneous attackers can cooperate to avoid detection (parallel port
scanning). It is also possible that some steps of an attack may re-
quire a joint action that is beyond the power of a single attacker.

Note that the notion of instrumental capacity does not cover at-
tackers' decision-making skills. Different groups of attackers can
utilize the set of available actions A S in different ways, some groups
making more efficient use of actions than others.

DEFINITION 5. A coordinated-attack graph is the union of all
coordinated-attack plans, which for a given adversary's instrumen-
tal capacity (AS, n), reach a goal state s, s E SG, when applied
to the current state So. More formally, a coordinated-attack graph
is:

C A G : (V, E , o~, So, So , AS , n)

where (V, E) is a multigraph of system state transitions. Each node
v E V, V _C S, represents a system state, and each arc a, a E AS ,
represents an attocker's action. The action set A S is the set of
all actions available to attackers, and n is the maximal number of
attackers that can participate in the attack. So is the current state,
and SG are the goal states, a is a labelling which associates each
arc with an action in AS .

46

alo: U1 logs in a l l : U1 creates sym a12:U1 opens F1
link F1 Dointinq to F2

2 a20: u2 logs in a21:u2 no-op a22:u2 no-op a 3: U2changes sym a24:u2 no-op
link F1 to point to TF

Figure 3: Coordinated-attack plan

As shown, a coordinated-attack graph is the union of all coordinated-
attack plans that can reach the goal G, i.e., the plans having a final
state in Sa . A coordinated-attack plan can be automatically gener-
ated by any sound and complete planning algorithm that allows for
concurrent actions, such as POME A planning algorithm is sound
if it generates only plans that are guaranteed to achieve the attack-
ers' goals. A complete algorithm is guaranteed to generate a plan, if
a successful plan exists. Obviously, a complete planning algorithm
can iteratively generate all existing plans, by disabling previously
generated plans.

Figure 4 is an example of a coordinated attack graph. The lower
branch of the attack graph represents the race condition attack dis-
cussed above. The upper branch represents a similar attack called
directory race cognition [10]. The dotted lines in Figure 4 are used
to join concurrent links. That is, the two links leaving node so are
concurrent, whereas the two links leaving sl represent a decision
choice in which attackers have to chose from two available attack
continuations.

Coordinated-attack graphs represent a semantic model of a sys-
tem and can facilitate a wide range of tasks, such as model check-
ing, opponent modelling, intrusion response, sensor configuration,
and so forth. For example, a security feature of a system can
be proved using standard model-checking techniques. Current re-
search on planning as model checking allows one to check a plan
for its correctness, or to validate a property of a system written in
Computation Tree Logic (CTL)[12].

There has been a lot of research on planning and concurrent plan-
ning. And yet surprisingly, we could not find an efficient imple-
mentation of a concurrent planner. POMP-based planners [2], for
example, fail to handle large state-action spaces. The exponen-
tial size of the action-space state could eventually be handled by
model-checking planners, such as UMOP [14] and MBP [1] which
make use of Ordered Binary Decision Diagrams (OBDD). OBDD's
are very compact and efficient representations of the assignments
satisfying'a given boolean formula. Planners using OBDD could
handle state-action spaces of magnitude 102o and higher [18]. Un-
fortunately, neither MBP nor UMOP allow for concurrent planning.

Ohe major problem with all existing planning and model-checking
systems is that they do not exploit action interdependencies to prune
the state-action space. For example, a planning system would search
for all possible action combinations applicable in a given state. The
situation is further exacerbated, by the exponential growth of the
number of states.

Concurrent actions might depend on one another in that an ac-
tion execution might require the concurrent execution of another

action. Such a dependence helps avoiding some futile search and
increase planning efficiency. For example, if an action is not ap-
plicable in a state, neither are the actions depending on it. That is,
all actions that require the concurrent execution of the given action
can be discarded. Action dependencies can be detected efficiently
in polynomial time, and all inapplicable actions could be discarded,
thereby significantly reducing the search space.

In this paper, we propose a method for pruning the size of coor-
dinated attack graphs. The method uses a data structure, the action-
dependence graph, to explicitly represent dependencies and inter-
action between concurrent actions.

DEFINITION 6. For a given adversary's instrumental capacity
(AS, k), an action-dependence graph is a graph-based represen-
tation of the action set AS , where each action is represented by a
node. A link is drawn from node al to node a2 iff a2 belongs to the
concurrent list of action al, i.e., the execution of al requires the
execution of a2.

The fact that the execution of action al requires the concurrent
execution of a2 can be viewed as a dependence of al on a2, i.e.,
action al cannot be executed unless a2 is concurrently executed.
Dependence is not a symmetric relation. In Figure 3, for example,
action a12 depends on a23. In other words, userl cannot openfile
unless user2 concurrently changes the symbolic link. The reverse,
however, is not true. An example of an action-dependence graph is

(o)

Figure 5: Action-dependence graph

shown in Figure 5. In this case, action a l requires the concurrent
execution of actions a2 and q3. Action a2 requires action a4, and
so forth.

47

a12:U1 opens . . / . . /etc/File

°% ****

alo: U1 logs in

a',: u2 oo-op
_ _ ~ ~ r t o t i ~ e

F 1 - F e ~

F2 - File 2 a 2 6 : u 2 no-op a27: u2 changes a28: u2 no-op
TF - Target File
Sym link - Symbolic Link sym link F1 to point to

TF

Figure 4: Coordinated-attack graph

The action-dependence graph in Figure 5 suggests that some ac-
tions are more "costly" than other actions. For example, if actions
a2 and a4 can achieve the same goal, there is no point in using a2.
If a2 is to be used, then it requires a4, which by itself is sufficient
for achieving the goal. This bring us to the following observation.

OBSERVATION 1. Minimum concurrency: A set of attackers
tries to achieve their goal with minimal sets of concurrent actions.

Put formally,

DEFINITION 7. A set of concurrent actions Z is irreducible, if
no proper subset of Z has the same effect as Z.

In other words, there is no point in using a large set of concur-
rent actions if a smaller subset can achieve the desired effect. There
are several reasons for choosing a small set of concurrent actions at
each stage of an attack. First, small action sets could decrease the
cost of each stage, and therefore the total cost of an attack. Sec-
ond, choosing more actions requires satisfying more preconditions,
unnecessarily increasing the complexity of an attack. Third, small
action sets can be carried out by a small number of attackers.

The action-dependence graph in Figure 5 shows that actions a4,
as, and a6 are independent. That is, each of them can be executed
on its own. The same cannot be said, however, for actions at , a2,
and a3, all of which depend on other actions. Intuitively, actions
a t , a2, and aa have different degrees of dependence. For example,
action at requires the execution of two other actions, while action
a2 requires only one. More formally,

DEFINITION 8. The degree of dependence of action a is:

d(a) = {0m + 1 otherwise.ifacti°naisindependent'

where m is the maximal degree of dependence of immediate suc-
cessors of a.

Definition 8 is only applicable to acyclic action-dependence graphs.
To apply it to cyclic graphs, we need to transform the initial graph
to an acyclic one in which every node corresponds to a maximal
strongly connected components of the initial graph. The degree
of dependence of a node in the original graph is then defined as
the degree of dependence of the strongly connected component to
which that node belongs.

In Figure 5, the degree of dependence is shown in parenthesis
next to each action. An action-dependence graph and degrees of
dependence can be computed in polynomial time using standard
graph algorithms. In Figure 6, we present the DBCP (Dependency-
Based Concurrent Planning) algorithm, which makes use of an action-
dependence graph to prune the search space. The algorithm has
four input variables: the set A of all joint actions inserted into the
plan so far, the current subgoal Subgoal, the set of available ac-
tions AS , and the set of available agents n. Subgoal is a list of
preconditions that have not been achieved. At the beginning, it is
initialized to the goal G. The algorithm works backwards. That
is, it starts with the goal preconditions and tries to satisfy them by
choosing appropriate actions, which" in turn requires satisfying new
preconditions, and so forth, until all preconditions are satisfied or
cannot be satisfied, given the set of available actions A S and num-
ber of agents n. At each step DBCP chooses a minimal action set
that satisfies a subgoal, thereby reducing both the cost of search and
the total cost of the plan.

48

DBCP(A, Subgoal, AS, n)
A+-- O
AvailableAttackers~-- n
Satisfied~-- 0
while (Subgoal ~ 0) and (AvailableAttackers > 0)
do

choose Precondition Q from Subgoal
choose action A~ad from AS with minimal dependence that

brings about Q
If Aadd does not exist then return failure
Satisfied*-- Satisfied U Q
JointAction ~ A~da
Subgoal~-- Subgoal - Q
AvailableAttackers ~-- AvailableAttackers - 1
for each Postcondition P in Aaad

if P ~ Satisfied then Satisfied ~-- Satisfied U P
for each action Acon on which action Aaaa depends
do

Flag ~-- false
for each precondition P in Acon
do

if (P ~ Q) and (P ~ Satisfied) then
do

Q ~ - - Q u P
Flag ~- true

enddo
enddo
if (Flag) then
do

if (AvailableAttackers = 0) then return failure
else AvailableAttackers ~-- AvailableAttackers - 1

JointAction ~-- JointAction U Acon
enddo

enddo
A ~- A u JointAction

enddo
if Subgoal = 0 then return A else return failure

Figure 6: Dependency Based Concurrent Planning (DBCP) al-
gorithm

5. VULNERABILITY ANALYSIS FOR CO-
ORDINATED ATTACKS

Planning used for model checking has proved to be practical and
general enough to tackle a wide range of problems [12]. Efficient
planning algorithms (including OBDD-based algorithms) can gen-
erate plans automatically and deal with large problem spaces. Us-
ing planning for vulnerability analysis has several advantages:

• It provides a uniform approach to both system and adversary
modelling.

• When a security property is invalidated by a planner, the
planner produces a coordinated-attack plan that can be used
by attackers to synchronize their actions. Moreover, a com-
plete planner can generate all plans invalidating the secufty
property. Knowing the attackers' plans can help a security
analyst to prevent attacks and plan incident response.

• A coordinated-attack model can be used for a model-based
intrusion detection which looks for specific coordination pat-
terns between users' activities,

• Planning can help not only vulnerability analysis, but also
robotic attacks in which several intelligent agents automati-
cally produce and launch a coordinated attack.

To perform plan-based model checking, we use the adversary's
instrumental capacity (AS, n) as a system model, LPG as a com-
plete and sound planner [11], and a specification of the security
property p written in CTL. Unlike other system models implemented
as a finite state transition system, our model is parametric: it de-
pends on the number of available attackers, n. For different n, the
planner will generate different transition systems. At first sight,
it seems unusual that the system model depends on an exogenous
parameter, n. On the other hand, it is quite natural to evaluate a
system against different attack scenarios. For example, a system
which is safe for a given set of actions AS and a given number of
attackers n, might not be safe for the same action set AS and n + 1
attackers.

In our case, model-checking works as follows. For a given safety
property p written in CTL, we generate the set of all states where p
holds:

States(p) = {s E S,p E L(s)}

Then, we set the goal states S c = States(p). Finally, we run the
planner with AS, n, Sc as input variables. A complete planner is
guaranteed to generate a plan (if such a plan exists) starting at the
current state So and reaching one of the goal states s, s E So. The
existence of a plan invalidates the security property p, while the
non-existence validates it. Note that a property is always checked
for a fixed set of actions AS, and the maximal number of attackers.

6. IMPLEMENTATION
In this section, we show how the race condition attack shown in

Figure 3 can be modelled and analyzed using Planning Domain
Description Language, PDDL, and implemented in LPG (Local
search for Planning Graphs) [11]. We have chosen the latest version
PDDL 2.1 used in the Third International Planning Competition in
2002 [9]. PDDL 2.1 is a versatile description language capable of
expressing temporal and numerical properties of planning domains
[81.

Before choosing LPG, we studied the applicability of several
planners to the coordinated attack domain. A major challenges
was the representation of concurrent actions. Initial attempts to
model the coordinated attack domain using non deterministic plan-
ners, such as MBP [1], failed. One of the major drawbacks of MBP
is its inability to support temporal and numerical features of ac-
tions, such as action duration and the invariants that must hold over
the duration. In PDDL, a durative action is represented by two
atomic actions corresponding to the end points of the durative ac-
tion. PDDL also allows for concurrent execution of actions, pro-
vided that the end-points of one action do not interact with the end
points or with the invariants of another action.

LPG uses a compact representation of a planning graph to define
a search neighborhood and to evaluate its elements using a parame-
terized function. The function assigns weights to different types of
inconsistencies in the current plan, and dynamically evaluates them
during search, using discrete Lagrange multipliers. Whereas most
of the current planners estimate plan quality based on the number
of actions exclusively, LPG also takes into account the execution
cost of an action. LPG uses this information to produce plans of
good quality by minimizing an objective function which includes
the overall execution cost of a plan. [11].

We modelled the coordinated-attack domain with PDDL 2.1 and
used LPG to generate plans. The domain model is the following.
Two users (user1 and user2) simultaneously log on to a system,
both having access rights to file f l , which is a symbolic link to
file f2 . User1 executes open_file with f l as argument. In the
meanwhile, user2 removes the symbolic link from f l to f 2 and

49

;; Version LPG-vl .0 ;; Seed 100348977
;; Command line: ./lpg -o attack_domain.pddl -f attack_problem -n
1
;; Problem: attack_problem
;; Search time: 0.050 Parsing time: 0.010 Mutex time: 0.000
;; Actions: 5 Execution cost: 5.000 Duration: 9.000

0.001:
0.002:
2.003:
3.004:
4.005:

(LOG_USER1 U2 F1 TF)[2.000] ;; cost 1.000
(LOG_USER2 U1 F1 TF)[2.000] ;; cost 1.000
(OPEN_OPENFILE U2 F1 TF)[1.000] ;; cost 1.000
(CHANGEJANK U1 F1 TF)[1.000] ;; cost 1.000
(CLOSE_OPENFILE U2 F1 TF)[5.000] ;; cost 1.000

Time 60

Figure 7: LPG-generated attack plan for the race condition do-
main

creates a new symbolic link f l to the target file t f , which could be
/etc/shadow, for example. As a result, user1 opens the target file
t f which he is not authorized to access.

To succeed in the attack, attackers' actions must be synchro-
nized. For example, action open_file must be executed first, and
change_link must be executed after open_file has started, but be-
fore it finishes.

The attack domain consists of 5 durative actions which cause
transitions (defined as a single action or a combination of actions)
between states in the attack graph. We modelled open_file as a com-
plex action consisting of two atomic actions open_open f i le and
close_open file. First, open_file starts with open_open f i le rais-
ing a signal which is captured by change_link and used as a precon-
dition for starting change_link. This guarantees that change_link
can start only after open_openfile has started . After finishing,
change_link raises another flag which is used as a precondition for
close_openfile to finish. In other words, we used temporal synchro-
nization constraints (that hold at the start and end of the action) to
ensure that change_link is executed between the start and the end
of open_file.

The plan generated by the LPG planner for the race-condition
attack is shown in Figure 7. The PDDL 2.1 code for the attack
domain, attack problem, and the output of the planner are included
in Appendix A for reference.

In Figure 7, the second logging operation is executed at moment
0.002, whereas the first logging starts at 0.001. The difference is
due to the fact that the actions will always be sequential unless
executed in parallel processing environments.

7. CONCLUSIONS
In this paper we defined the notion of coordinated-attack graph,

proposed an algorithm for efficient generation of coordinated-attack
graphs, demonstrated how coordinated-attack can be used for vul-
nerability analysis, and discussed an implementation of a coordinated-
attack graph.

Coordinated-attack graphs can facilitate an wide range of tasks,
such as model checking, opponent modelling, intrusion response,
sensor configuration, and so forth.

There are several open directions for future research: automatic
intention recognition for coordinated attacks, adversafial planning,
automatic sensor configuration for detecting coordinated attacks,
etc. Solving all these problems will help improve systems security
against coordinated attacks.

8. ACKNOWLEDGEMENTS
The authors thank the anonymous reviewers for their helpful

comments and suggestions.

9. REFERENCES
[1] P. Bertoli, A. Cimatti, M. Pistore, M. Rovefi, and P. Traverso.

MBP: a model based planner. In JCAI'O1 Workshop on
Planning under Uncertainty, pages 71-78, 2001.

[2] C. Boutilier and R. Brafman. Partial-oder planning with
concurrent interacting actions. Journal of Artificial
Intelligence Research, 14:105-136, 2001.

[3] C. Boutilier, T. Dean, and S. Hanks. Planning under
uncertainty: Structural assumptions and computational
leverage. In M. Ghallab and A. Milani, editors, New
Directions in AI Planning, pages 157-172. IOS Press
(Amsterdam), 1996.

[4] S. Brainov and T. Sandholm. Reasoning about others:
Representing and processing infinite belief hierarchies. In
Proceedings of the Fourth International Conference on
Multiagent Systems, pages 71-78, Boston, 2000.

[5] S. Braynov. On future avenues for distributed attacks. In
Proceedings of the 2nd European Conference on Information
Warfare and Security (ECIW), Reading, UK, 2003.

[6] D. Carmel and S. Markovitch. Opponent modeling in
multi-agent systems. In G. WeiB and S. Sen, editors,
Adaptation and Learning in Multi-Agent Systems, pages
40-52. Springer-Verlag: Heidelberg, Germany, 1996.

[71 S. Eckmann, G. Vigna, and R. Kemmerer. STATL: An attack
language for state-based intrusion detection, 2000.

[8] M. Fox and D. Long. PDDL 2.1: Techical Documentation.
April 25, 2003.

[9] M. Fox and L. Long. PDDL 2.1: An extension to PDDL for
expressing temporal planning domains. Technical Report,
Department of Computer Science, University of Durham,
UK, 2001.

T. Garfinkel. Traps and pitfalls: Practical problems in in
system call interposition based security tools. In Proc.
Network and Distributed Systems Security Symposium,
February 2003.
A. Gerevini and I. Serina. LPG: a planner based on planning
graphs with action costs. In Proceedings of the Sixth Int.
Conference on A1 Planning and Scheduling (AIPS'02), pages
13-22, 2002.

E Giunchiglia and P. Traverso. Planning as model checking.
In In Proceeding of the Fifth European Conference on
Planning, pages 1-20, 1999.
A. Householder, K. Houle, and C. Dougherty. Computer
attack trends challenge internet security. Security and
Privacy, 1, 2002.

R. Jensen and M. Veloso. Obdd-based universal planning for
synchronized agents in non-deterministic domains. Journal
of Artificial Intelligence Research, 13:189-226, 2000.
S. Jha, O. Sheyner, and J.Wing. Minimization and reliability
analyses of attack graphs, 2002.
S. Jha, O. Sheyner, and J.Wing. Two formal analyses of
attack graphs. In Computer Security Foundations Workshop
(CSFW), pages 49-63, Nova Scotia, Canada, 2002.
S. Jha and J. Wing. Survivability analysis of networked
systems. In International Conference on Software
Engineering, pages 307 - 317, Toronto, Canada, 2001.
J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J.
Hwang. Symbolic Model Checking: 1020 States and

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171

[181

50

Beyond. In Proceedings of the Fifth Annual IEEE
Symposium on Logic in Computer Science, pages 1-33,
Washington, D.C., 1990. IEEE Computer Society Press.

[19] N. Kushmerick, S. Hanks, and D. Weld. An algorithm for
probabilistic least-commitment planning. In Proceedings of
the Twelfth National Conference on Artificial Intelligence
(AAAI-94), volume 2, pages 1073-1078, Seattle,
Washington, USA, 1994. AAAI Press/MIT Press.

[20] J. Legon. FBI seeks to trace massive Net attack. CNN,
October 28, 2002.

[21] U. Lindqvist and R Porras. Detecting computer and network
misuse through the production-based expert system toolset
(p-best). In Proceedings of the 19991EEE Symposium on
Security and Privacy, pages 146-161, Oakland, California,
1999.

[22] C. Phillips and L. Swiler. A graph-based system for
network-vulnerability analysis. In Proceedings of the i998
Workshop on New Security Paradigms, pages 71-79, 1998.

[23] B. Schneier. Attack trees: Modeling security threats. Dr.
Dobb 's Journal, December, 1999.

[24] L. Swiler, C. Phillips, D. Ellis, and S. Chakerian.
Computer-attack graph generation tool. In DARPA
Information Survivability Conference and Exposition, pages
146-161, Anaheim, California, 2001.

[25] S. Tzu and L. Giles. Sun Tzu on theArt of War. Kegan Paul
Intl, 2002.

[26] G. Vigna, S. Eckmann, and R. Kemmerer. Attack languages.
In In Proceedings of the IEEE Information Survivability
Workshop, 2000.

APPENDIX
A PDDL 2.1 code for the attack domain

(define (domain attack_domain)
(:requirements :strips :equality :typing :fluents :durative-actions)

(:types users files slink)
(:predicates

(loggedl ?u - users) (logged2 ?v - users)
(access ?u - users ?f- files)
(opening ?p - files)
(opened ?q - files)
(sym_link ?x -files ?y - files)

)
(:durative-action log_user 1

:parameters (?r - users ?f- files ?g - files)
:duration (= ?duration 2)
:condition (at start (not (loggedl ?r)))
:effect (and

(at end (loggedl ?r))
(at end (access ?r ?f))

)
)

(:durative-action log_user2
:parameters (?r - users ?f- files ?g - files)
:duration (= ?duration 2)

:condition (at start (not (logged2 ?r)))
:effect (and

(at end (logged2 ?r))
(at end (access ?r ?f))

)
)

(:durative-action open_openfile
:parameters (?r - users ?f - files ?g - files)
:duration (= ?duration 1)
:condition (and (at start (loggedl ?r)) (at start (access ?r

?t)))
:effect (at end (opening ?f))

)

(:durative-action change_link
:parameters (?l - users ?s -files ?t - files)
:duration (= ?duration 1)
:condition (and (at start (logged2 ?1)) (at start (opening ?s)))
:effect (at end (sym_link ?s ?t))

)

(:durative-action close_openfile
:parameters (?r - users ?f- files ?g - files)
:duration (= ?duration 5)
:condition (and (at start (loggedl ?r)) (at start (access ?r ?f))

(at start (opening ?f)) (at start (sym_link ?f ?g)))
:effect (and

(at end (opened ?g))
)

PDDL 2.1 code for the attack domain

(define (problem attack_problem) (:domain attack_domain)
(:objects

u l - users
u2 - users
f l - files
t f - files

)
(:init

(not (loggedl ul))
(not (loggedl u2))
(not (logged2 u 1))
(not (logged2 u2))

)
(:goal

(opened tf)
)
(:metric minimize (total-time)))

51

