3,600 research outputs found

    Investigation of aircraft landing in variable wind fields

    Get PDF
    A digital simulation study is reported of the effects of gusts and wind shear on the approach and landing of aircraft. The gusts and wind shear are primarily those associated with wind fields created by surface wind passing around bluff geometries characteristic of buildings. Also, flight through a simple model of a thunderstorm is investigated. A two-dimensional model of aircraft motion was represented by a set of nonlinear equations which accounted for both spatial and temporal variations of winds. The landings of aircraft with the characteristics of a DC-8 and a DHC-6 were digitally simulated under different wind conditions with fixed and automatic controls. The resulting deviations in touchdown points and the controls that are required to maintain the desired flight path are presented. The presence of large bluff objects, such as buildings in the flight path is shown to have considerable effect on aircraft landings

    A prototype of an autonomous controller for a quadrotor UAV

    Get PDF
    The paper proposes a complete real-time control algorithm for autonomous collision-free operations of the quadrotor UAV. As opposed to fixed wing vehicles the quadrotor is a small agile vehicle which might be more suitable for the variety of specific applications including search and rescue, surveillance and remote inspection. The developed control system incorporates both trajectory planning and path following. Using a differential flatness property the trajectory planning is posed as a constrained optimization problem in the output space (as opposed to the control space), which simplifies the problem. The trajectory and speed profile are parameterized to reduce the problem to a finite dimensional problem. To optimize the speed profile independently of the trajectory a virtual argument is used as opposed to time. A path following portion of the proposed algorithm uses a standard linear multi-variable control technique. The paper presents the results of simulations to demonstrate the suitability of the proposed control algorithm

    Control and Optimization for Aerospace Systems with Stochastic Disturbances, Uncertainties, and Constraints

    Full text link
    The topic of this dissertation is the control and optimization of aerospace systems under the influence of stochastic disturbances, uncertainties, and subject to chance constraints. This problem is motivated by the uncertain operating environments of many aerospace systems, and the ever-present push to extract greater performance from these systems while maintaining safety. Explicitly accounting for the stochastic disturbances and uncertainties in the constrained control design confers the ability to assign the probability of constraint satisfaction depending on the level of risk that is deemed acceptable and allows for the possibility of theoretical constraint satisfaction guarantees. Along these lines, this dissertation presents novel contributions addressing four different problems: 1) chance-constrained path planning for small unmanned aerial vehicles in urban environments, 2) chance-constrained spacecraft relative motion planning in low-Earth orbit, 3) stochastic optimization of suborbital launch operations, and 4) nonlinear model predictive control for tracking near rectilinear halo orbits and a proposed stochastic extension. For the first problem, existing dynamic and informed rapidly-expanding random trees algorithms are combined with a novel quadratic programming-based collision detection algorithm to enable computationally efficient, chance-constrained path planning. For the second problem, a previously proposed constrained relative motion approach based on chained positively invariant sets is extended in this dissertation to the case where the spacecraft dynamics are controlled using output feedback on noisy measurements and are subject to stochastic disturbances. Connectivity between nodes is determined through the use of chance-constrained admissible sets, guaranteeing that constraints are met with a specified probability. For the third problem, a novel approach to suborbital launch operations is presented. It utilizes linear covariance propagation and stochastic clustering optimization to create an effective software-only method for decreasing the probability of a dangerous landing with no physical changes to the vehicle and only minimal changes to its flight controls software. For the fourth problem, the use of suboptimal nonlinear model predictive control (NMPC) coupled with low-thrust actuators is considered for station-keeping on near rectilinear halo orbits. The nonlinear optimization problems in NMPC are solved with time-distributed sequential quadratic programming techniques utilizing the FBstab algorithm. A stochastic extension for this problem is also proposed. The results are illustrated using detailed numerical simulations.PHDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162992/1/awbe_1.pd

    A study to identify and compare airborne systems for in-situ measurements of launch vehicle effluents

    Get PDF
    An in-situ system for monitoring the concentration of HCl, CO, CO2, and Al2O3 in the cloud of reaction products that form as a result of a launch of solid propellant launch vehicle is studied. A wide array of instrumentation and platforms are reviewed to yield the recommended system. An airborne system suited to monitoring pollution concentrations over urban areas for the purpose of calibrating remote sensors is then selected using a similar methodology to yield the optimal configuration

    Researcher's guide to the NASA Ames Flight Simulator for Advanced Aircraft (FSAA)

    Get PDF
    Performance, limitations, supporting software, and current checkout and operating procedures are presented for the flight simulator, in terms useful to the researcher who intends to use it. Suggestions to help the researcher prepare the experimental plan are also given. The FSAA's central computer, cockpit, and visual and motion systems are addressed individually but their interaction is considered as well. Data required, available options, user responsibilities, and occupancy procedures are given in a form that facilitates the initial communication required with the NASA operations' group

    Decentralized UAV guidance using modified boid algorithms

    Get PDF
    Decentralized guidance of Unoccupied Air Vehicles (UAVs) is a very challenging problem. Such technology can lead to improved safety, reduced cost, and improved mission efficiency. Only a few ideas for achieving decentralized guidance exist, the most effective being the boid algorithm. Boid algorithms are rule-based guidance methods derived from observations of animal swarms. In this paper, boid rules are used to autonomously control a group of UAVs in high-level transit simulations. This paper differs from previous work in that, as an alternative to using exponentially scaled behavior weightings, the weightings are computed off-line and scheduled according to a contingency management system. The motivation for this technique is to reduce the amount of on-line computation required by the flight system. Many modifications to the basic boid algorithm are required in order to achieve a flightworthy design. These modifications include the ability to define flight areas, limit turning maneuvers in accordance with the aircraft dynamics, and produce intelligent waypoint paths. The use of a contingency management system is also a major modification to the boid algorithm. A Simple Genetic Algorithm is used to partially optimize the behavior weightings of the boid algorithm. While a full optimization of all contingencies is not performed due to computation requirements, the framework for such a process is developed. Wolfram\u27s Matlab software is used to develop and simulate the boid guidance algorithm. The algorithm is interfaced with Cloud Cap Technology\u27s Piccolo autopilot system for Hardware-in-the-Loop simulations. These high-fidelity simulations prove this technology is both feasible and practical. They also prove the boid guidance system developed herein is suitable for comprehensive flight testing

    Mission-oriented requirements for updating MIL-H-8501. Volume 2: STI background and rationale

    Get PDF
    A supplement to the structure of a new flying and ground handling qualities specification for military rotorcraft structure is presented in order to explain the background and rationale for the specification structure, the proposed forms of criteria, and the status of the existing data base. Critical gaps in the data base for the new structure are defined, and recommendations are provided for the research required to address the most important of these gaps
    • …
    corecore