20,134 research outputs found
Photonic crystal fiber half-taper probe based refractometer
A compact singlemode - photonic crystal fiber - singlemode fiber tip (SPST) refractive index sensor is demonstrated in this paper. A CO2 laser cleaving technique is utilised to provide a clean-cut fiber tip which is then coated by a layer of gold to increase reflection. An average sensitivity of 39.1 nm/RIU and a resolvable index change of 2.56 x 10-4 are obtained experimentally with a ~3.2 µm diameter SPST. The temperature dependence of this fiber optic sensor probe is presented. The proposed SPST refractometer is also significantly less sensitive to temperature and an experimental demonstration of this reduced sensitivity is presented in the paper. Because of its compactness, ease of fabrication, linear response, low temperature dependency, easy connectivity to other fiberized optical components and low cost, this refractometer could find various applications in chemical and biological sensing
A scanning probe-based pick-and-place procedure for assembly of integrated quantum optical hybrid devices
Integrated quantum optical hybrid devices consist of fundamental constituents
such as single emitters and tailored photonic nanostructures. A reliable
fabrication method requires the controlled deposition of active nanoparticles
on arbitrary nanostructures with highest precision. Here, we describe an easily
adaptable technique that employs picking and placing of nanoparticles with an
atomic force microscope combined with a confocal setup. In this way, both the
topography and the optical response can be monitored simultaneously before and
after the assembly. The technique can be applied to arbitrary particles. Here,
we focus on nanodiamonds containing single nitrogen vacancy centers, which are
particularly interesting for quantum optical experiments on the single photon
and single emitter level.Comment: The following article has been submitted to Review of Scientific
Instruments. After it is published, it will be found at http://rsi.aip.org
Recommended from our members
Array atomic force microscopy for real-time multiparametric analysis.
Nanoscale multipoint structure-function analysis is essential for deciphering the complexity of multiscale biological and physical systems. Atomic force microscopy (AFM) allows nanoscale structure-function imaging in various operating environments and can be integrated seamlessly with disparate probe-based sensing and manipulation technologies. Conventional AFMs only permit sequential single-point analysis; widespread adoption of array AFMs for simultaneous multipoint study is challenging owing to the intrinsic limitations of existing technological approaches. Here, we describe a prototype dispersive optics-based array AFM capable of simultaneously monitoring multiple probe-sample interactions. A single supercontinuum laser beam is utilized to spatially and spectrally map multiple cantilevers, to isolate and record beam deflection from individual cantilevers using distinct wavelength selection. This design provides a remarkably simplified yet effective solution to overcome the optical cross-talk while maintaining subnanometer sensitivity and compatibility with probe-based sensors. We demonstrate the versatility and robustness of our system on parallel multiparametric imaging at multiscale levels ranging from surface morphology to hydrophobicity and electric potential mapping in both air and liquid, mechanical wave propagation in polymeric films, and the dynamics of living cells. This multiparametric, multiscale approach provides opportunities for studying the emergent properties of atomic-scale mechanical and physicochemical interactions in a wide range of physical and biological networks
A ratiometric Al³⁺ ion probe based on the coumarin-quinoline FRET system
A coumarin-quinoline based fluorescence resonance energy transfer (FRET) system (TCQ) has been synthesized and employed as a ratiometric fluorescence probe. The selective fluorescent response of the probe TCQ toward Al³⁺ was devised by employing a quinoline moiety as a FRET energy donor with a coumarin moiety as an energy acceptor. The quinoline emission at 390 nm decreased and the coumarin emission at 480 nm increased concurrently on addition of Al³⁺ under excitation wavelength at 253 nm. The TCQ probe exhibited high selectivity for Al³⁺ as compared to other tested metal ions and the ratiometric sensing of Al³⁺ was determined by plotting the fluorescence intensity ratio at 480 nm and 390 nm versus Al³⁺ ion concentration. Moreover, test strips based on TCQ were fabricated, which were found to act as a convenient and efficient Al³⁺ ion detection kit. Furthermore, this system has been used for imaging of Al³⁺ in living cells
Fronthaul evolution: From CPRI to Ethernet
It is proposed that using Ethernet in the fronthaul, between base station baseband unit (BBU) pools and remote radio heads (RRHs), can bring a number of advantages, from use of lower-cost equipment, shared use of infrastructure with fixed access networks, to obtaining statistical multiplexing and optimised performance through probe-based monitoring and software-defined networking. However, a number of challenges exist: ultra-high-bit-rate requirements from the transport of increased bandwidth radio streams for multiple antennas in future mobile networks, and low latency and jitter to meet delay requirements and the demands of joint processing. A new fronthaul functional division is proposed which can alleviate the most demanding bit-rate requirements by transport of baseband signals instead of sampled radio waveforms, and enable statistical multiplexing gains. Delay and synchronisation issues remain to be solved
Recommended from our members
Miami Classification for Probe-Based Confocal Laser Endomicroscopy
An essential element for any new advanced imaging technology is standardization of indications, terminology, categorization of images, and research priorities. In this review, we propose a state-of-the-art classification system for normal and pathological states in gastrointestinal disease using probe-based confocal laser endomicroscopy (pCLE). The Miami classification system is based on a consensus of pCLE users reached during a meeting held in Miami, Florida, in February 2009
Novel Fluorescent Probe Based on Anthryl Dendron Having Oligo(ethyleneoxide) Groups at the Terminals
Amphiphilic anthryl dendrons 5 and 6, which have carboxylate groups or oligo(ethyleneoxide) groups at the terminals, show solvatochromic properties. Reaction efficiency of photodimerization and dynamic light scattering (DLS) experiment of 5 and 6 reveal that formation of the aggregate of dendrons 5 or 6 plays a crucial role in this solvatochromism. Interestingly, solvatochromic property of anthryl dendron 6 was useful for determination of the ratio of methanol/water in solution as a fluorescent probe
A study on the thermal conductivity of compacted bentonites
Thermal conductivity of compacted bentonite is one of the most important
properties in the design of high-level radioactive waste repositories where
this material is proposed for use as a buffer. In the work described here, a
thermal probe based on the hot wire method was used to measure the thermal
conductivity of compacted bentonite specimens. The experimental results were
analyzed to observe the effects of various factors (i.e. dry density, water
content, hysteresis, degree of saturation and volumetric fraction of soil
constituents) on the thermal conductivity. A linear correlation was proposed to
predict the thermal conductivity of compacted bentonite based on experimentally
observed relationship between the volumetric fraction of air and the thermal
conductivity. The relevance of this correlation was finally analyzed together
with others existing methods using experimental data on several compacted
bentonites
- …
