2,365 research outputs found

    Evolutionary modeling in economics : recent history and immediate prospects

    Get PDF
    Abstract not availablemathematical economics and econometrics ;

    REBA: A Refinement-Based Architecture for Knowledge Representation and Reasoning in Robotics

    Get PDF
    This paper describes an architecture for robots that combines the complementary strengths of probabilistic graphical models and declarative programming to represent and reason with logic-based and probabilistic descriptions of uncertainty and domain knowledge. An action language is extended to support non-boolean fluents and non-deterministic causal laws. This action language is used to describe tightly-coupled transition diagrams at two levels of granularity, with a fine-resolution transition diagram defined as a refinement of a coarse-resolution transition diagram of the domain. The coarse-resolution system description, and a history that includes (prioritized) defaults, are translated into an Answer Set Prolog (ASP) program. For any given goal, inference in the ASP program provides a plan of abstract actions. To implement each such abstract action, the robot automatically zooms to the part of the fine-resolution transition diagram relevant to this action. A probabilistic representation of the uncertainty in sensing and actuation is then included in this zoomed fine-resolution system description, and used to construct a partially observable Markov decision process (POMDP). The policy obtained by solving the POMDP is invoked repeatedly to implement the abstract action as a sequence of concrete actions, with the corresponding observations being recorded in the coarse-resolution history and used for subsequent reasoning. The architecture is evaluated in simulation and on a mobile robot moving objects in an indoor domain, to show that it supports reasoning with violation of defaults, noisy observations and unreliable actions, in complex domains.Comment: 72 pages, 14 figure

    Proactive Algorithms for Job Shop Scheduling with Probabilistic Durations

    Get PDF
    Most classical scheduling formulations assume a fixed and known duration for each activity. In this paper, we weaken this assumption, requiring instead that each duration can be represented by an independent random variable with a known mean and variance. The best solutions are ones which have a high probability of achieving a good makespan. We first create a theoretical framework, formally showing how Monte Carlo simulation can be combined with deterministic scheduling algorithms to solve this problem. We propose an associated deterministic scheduling problem whose solution is proved, under certain conditions, to be a lower bound for the probabilistic problem. We then propose and investigate a number of techniques for solving such problems based on combinations of Monte Carlo simulation, solutions to the associated deterministic problem, and either constraint programming or tabu search. Our empirical results demonstrate that a combination of the use of the associated deterministic problem and Monte Carlo simulation results in algorithms that scale best both in terms of problem size and uncertainty. Further experiments point to the correlation between the quality of the deterministic solution and the quality of the probabilistic solution as a major factor responsible for this success

    An Analysis of the Value of Information when Exploring Stochastic, Discrete Multi-Armed Bandits

    Full text link
    In this paper, we propose an information-theoretic exploration strategy for stochastic, discrete multi-armed bandits that achieves optimal regret. Our strategy is based on the value of information criterion. This criterion measures the trade-off between policy information and obtainable rewards. High amounts of policy information are associated with exploration-dominant searches of the space and yield high rewards. Low amounts of policy information favor the exploitation of existing knowledge. Information, in this criterion, is quantified by a parameter that can be varied during search. We demonstrate that a simulated-annealing-like update of this parameter, with a sufficiently fast cooling schedule, leads to an optimal regret that is logarithmic with respect to the number of episodes.Comment: Entrop

    Synchronization-Aware and Algorithm-Efficient Chance Constrained Optimal Power Flow

    Full text link
    One of the most common control decisions faced by power system operators is the question of how to dispatch generation to meet demand for power. This is a complex optimization problem that includes many nonlinear, non convex constraints as well as inherent uncertainties about future demand for power and available generation. In this paper we develop convex formulations to appropriately model crucial classes of nonlinearities and stochastic effects. We focus on solving a nonlinear optimal power flow (OPF) problem that includes loss of synchrony constraints and models wind-farm caused fluctuations. In particular, we develop (a) a convex formulation of the deterministic phase-difference nonlinear Optimum Power Flow (OPF) problem; and (b) a probabilistic chance constrained OPF for angular stability, thermal overloads and generation limits that is computationally tractable.Comment: 11 pages, 3 figure
    • …
    corecore