108 research outputs found

    Multi-attributes tradespace exploration for survivability: Application to satellite radar

    Get PDF
    Multi-Attribute Tradespace Exploration (MATE) for Survivability is introduced as a general methodology for survivability analysis and demonstrated through an application to a satellite radar system. MATE for Survivability applies decision theory to the parametric modeling of thousands of design alternatives across representative distributions of disturbance environments. Survivability considerations are incorporated into the existing MATE process (i.e., a solution-generating and decision-making framework that applies decision theory to model-based design) by applying empirically-validated survivability design principles and value-based survivability metrics to concept generation and concept evaluation activities, respectively. MATE for Survivability consists of eight iterative phases: (1) define system value proposition, (2) generate concepts, (3) specify disturbances, (4) apply survivability principles, (5) model baseline system performance, (6) model impact of disturbances on dynamic system performance, (7) apply survivability metrics, and (8) select designs for further analysis. The application of MATE for Survivability to satellite radar demonstrates the importance of incorporating survivability considerations into conceptual design for identifying inherently survivable architectures that efficiently balance competing performance metrics of lifecycle cost, mission utility, and operational survivability

    Multi-Attribute Tradespace Exploration for Survivability

    Get PDF
    Multi-Attribute Tradespace Exploration for Survivability is a system design and analysis methodology that incorporates survivability considerations into the tradespace exploration process (i.e., a solution-generating and decision-making framework that applies decision theory to model-based design). During the concept generation phase of tradespace exploration, the methodology applies seventeen empirically validated survivability design principles spanning susceptibility reduction, vulnerability reduction, and resilience enhancement. During subsequent concept evaluation, the methodology adds value-based survivability metrics to traditional architectural evaluation criteria of mission utility and lifecycle cost. Applied to a satellite radar mission, the methodology allowed operational survivability to be statistically evaluated across representative distributions of naturally occurring disturbances in the space environment and for survivability to be incorporated as a decision factor earlier in the design process. Constellations in the illustrative example are shown to be the most survivable, mitigating disturbances architecturally, rather than through additive features.Massachusetts Institute of Technology (Systems Engineering Advancement Research Initiative (SEAri))Massachusetts Institute of Technology. Program on Emerging Technologie

    Fixed-wing Aircraft Combat Survivability Analysis for Operation Enduring Freedom and Operation Iraqi Freedom

    Get PDF
    The primary tenet of the aircraft survivability discipline is threat definition. In order to deliver relevant capabilities and protection to the warfighter it is imperative; therefore, to provide timely, accurate, and actionable threat data to the survivability community. In an attempt to identify the evolution of aircraft threats in today\u27s combat environment, an analysis of fixed-wing aircraft battle damage was conducted. This analysis reports battle damage incidents from OPERATIONS ENDURING FREEDOM (OEF) and IRAQI FREEDOM(OIF). Additionally, reported damage incidents were then validated by crosschecking aircraft maintenance records from this period to eliminate non-hostile fire data points. This revolutionary approach uncovered discontinuities, which were further explored to identify their root cause. As a result, significant Air Force policy changes in the realm of battle damage reporting procedures were suggested. In the end, lives will be saved because the acquisition community at large will have valuable threat data in which they can be confident

    Multi-attribute tradespace exploration for survivability

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Engineering Systems Division, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 235-249).Survivability is the ability of a system to minimize the impact of a finite-duration disturbance on value delivery (i.e., stakeholder benefit at cost), achieved through (1) the reduction of the likelihood or magnitude of a disturbance, (2) the satisfaction of a minimally acceptable level of value delivery during and after a disturbance, and/or (3) a timely recovery. Traditionally specified as a requirement in military systems, survivability is an increasingly important consideration for all engineering systems given the proliferation of natural and artificial threats. Although survivability is an emergent system property that arises from interactions between a system and its environment, conventional approaches to survivability engineering are reductionist in nature. Furthermore, current methods neither accommodate dynamic threat environments nor facilitate stakeholder communication for conducting trade-offs among system lifecycle cost, mission utility, and operational survivability. Multi-Attribute Tradespace Exploration (MATE) for Survivability is introduced as a system analysis methodology to improve the generation and evaluation of survivable alternatives during conceptual design. MATE for Survivability applies decision theory to the parametric modeling of thousands of design alternatives across representative distributions of disturbance environments. To improve the generation of survivable alternatives, seventeen empirically-validated survivability design principles are introduced. The general set of design principles allows the consideration of structural and behavioral strategies for mitigating the impact of disturbances over the lifecycle of a given encounter.(cont.) To improve the evaluation of survivability, value-based metrics are introduced for the assessment of survivability as a dynamic, continuous, and path-dependent system property. Two of these metrics, time-weighted average utility loss and threshold availability, are used to evaluate survivability based on the relationship between stochastic utility trajectories of system state and stakeholder expectations across nominal and perturbed environments. Finally, the survivability "tear(drop)" tradespace is introduced to enable the identification of inherently survivable architectures that efficiently balance performance metrics of cost, utility, and survivability. The internal validity and prescriptive value of the design principles, metrics, and tradespaces comprising MATE for Survivability are established through applications to the designs of an orbital transfer vehicle and a satellite radar system.by Matthew G. Richards.Ph.D

    Middle-Agents Organized in Fault Tolerant and Fixed Scalable Structure

    Get PDF
    Agents in a multi-agent system usually use middle-agents to locate service providers. Since one central middle-agent represents a single point of failure and communication bottleneck in the system, therefore a structure of middle-agents is used to overcome these issues. We designed and implemented a structure of middle-agents called dynamic hierarchical teams that has user-defined level of fault-tolerance and is moreover fixed scalable. We prove that the structure that has teams of size lambda has vertex and edge connectivity equal to lambda, i.e., the structure stays connected despite lambda-1 failures of middle-agents or lambda-1 communication channels. We focus on social knowledge management describing several methods that can be used for social knowledge propagation and search in this structure. We also test the fault-tolerance of this structure in practical experiments

    Probabilistic Broadcasting in Wireless Ad Hoc Networks

    Get PDF

    Plan-based replication for fault-tolerant multi-agent systems

    Full text link

    Analysis of Linear Programming Relaxations for a Class of Connectivity Problems

    Get PDF
    We consider the analysis of linear programming (LP) relaxations for a class of connectivity problems. The central problem in the class is the survivable network design problem - the problem of designing a minimum cost undirected network satisfying prespecified connectivity requirements between every pair of vertices. This class includes a number of classical combinatorial optimization problems as special cases such as the Steiner tree problem, the traveling salesman problem, the k-person traveling salesman problem and the k-edge-connected network problem. We analyze a classical linear programming relaxation for this class of problems under three perspectives: structural, worst-case and probabilistic. Our analysis rests mainly upon a deep structural property, the parsimonious property, of this LP relaxation. Roughly stated, the parsimonious property says that, if the cost function satisfies the triangle inequality, there exists an optimal solution to the LP relaxation for which the degree of each vertex is the smallest it can possibly be. The numerous consequences of the parsimonious property make it particularly important. First, several special cases of the parsimonious property are interesting properties by themselves. For example, we derive the monotonicity of the Held-Karp lower bound for the traveling salesman problem and the fact that this bound is a relaxation on the 2-connected network problem. Another consequence is the fact that vertices with no connectivity requirement, such as Steiner vertices in the undirected Steiner tree problem, are unnecessary for the LP relaxation under consideration. From the parsimonious property, it also follows that the LP relaxation bounds corresponding to the Steiner tree problem, the kedge-connected network problem or even the Steiner k-edge-connected network problem can be computed a la Held and Karp.Secondly, we use the parsimonious property to perform worst-case analyses of the duality gap corresponding to these LP relaxations. For this purpose, we introduce two heuristics for the survivable network design problem and present bounds dependent on the actual connectivity requirements. Among other results, we show that the value of the LP relaxation of the Steiner tree problem is within twice the value of the minimum spanning tree heuristic and that several generalizations of the Steiner tree problem, including the k-edge-connected network problem, can also be approximated within a factor of 2 (in some cases, even smaller than 2). We also introduce a new relaxation a la Held and Karp for the k-person traveling salesman problem and show that a variation of an existing heuristic is within times the value of this relaxation. We show that most of our bounds are tight and we investigate whether the bound of 3 for the Held-Karp lower bound is tight.We also perform a probabilistic analysis of the duality gap of these LP relaxations. The model we consider is the Euclidean model. We generalize Steele's theorem on the asymptotic behavior of Euclidean functionals in a way that is particularly convenient for the analysis of LP relaxations. We show that, under the Euclidean model, the duality gap is almost surely a constant and we provide theoretical and empirical bounds on these constants for different problems. From this analysis, we conclude that the undirected LP relaxation for the Steiner tree problem is fairly loose. Finally, we consider the use of directed relaxations for undirected problems. We establish in which settings a related parsimonious property holds and show that, for the Steiner tree problem, the directed relaxation strictly improves upon the undirected relaxation in the worst-case. This latter result uses an elementary but powerful property of linear programs
    • …
    corecore