
Computing and Informatics, Vol. 22, 2003, 597–622

MIDDLE-AGENTS ORGANIZED IN FAULT TOLERANT
AND FIXED SCALABLE STRUCTURE

Pavel Tichý

Rockwell Automation Research Center and Czech Technical University

Americká 22

120 00 Prague, Czech Republic

e-mail: ptichy@ra.rockwell.com

Revised manuscript received 23 March 2004

Abstract. Agents in a multi-agent system usually use middle-agents to locate ser-
vice providers. Since one central middle-agent represents a single point of failu-
re and communication bottleneck in the system, therefore a structure of middle-
agents is used to overcome these issues. We designed and implemented a structure
of middle-agents called dynamic hierarchical teams that has user-defined level of
fault-tolerance and is moreover fixed scalable. We prove that the structure that has
teams of size λ has vertex and edge connectivity equal to λ, i.e., the structure stays
connected despite λ− 1 failures of middle-agents or λ− 1 communication channels.
We focus on social knowledge management describing several methods that can be
used for social knowledge propagation and search in this structure. We also test
the fault-tolerance of this structure in practical experiments.

Keywords: Multi-agent systems, fault tolerance, scalability

1 INTRODUCTION

One of the main advantages in using multi-agent systems is fault tolerance. When
an agent fails a multi-agent system could “offer” another agent that can be used
instead. Is this enough to ensure fault tolerant behavior? If a multi-agent system
uses a middle-agent [4] to search for the capabilities of providers, i.e., to search for
an alternative agent with the same capability, then this middle-agent can become
a single point of failure, i.e., social knowledge is centralized in this case. It is not
possible to search for capabilities of other agents and to form virtual organizations

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics, SAS,...

https://core.ac.uk/display/267941411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


598 P. Tichý

any more if the system looses the middle-agent. Fault tolerance issue is tightly
coupled with load sharing. When only one middle-agent is used then it becomes
a communication bottleneck and can be easily overloaded.

Social knowledge in multi-agent systems can be understood as knowledge that
is used to deal with other agents in the multi-agent system. Social knowledge con-
sists of the information about the name of agents, their location (address), their
capabilities (services), the language they use, their actual state, their conversations,
behavioral patterns, and so on [13]. Knowledge that is located in agents can be
formally split into two distinct types [2]:

domain knowledge (or problem-solving knowledge [13]) – concerns a pro-
blem-solving domain and an environment of an agent. Domain knowledge rep-
resents the decision-making process of an agent.

social knowledge – allows an agent to interact with other agents and possibly
improves this process.

Several approaches have been used already to deal with fault tolerance and
scalability issues. The teamwork-based technique [11] has been proposed that uses
a group ofN middle-agents where each middle-agent is connected to all other middle-
agents forming a complete graph. This technique offers fault tolerance but since it
uses a complete graph this structure is not fixed scalable as shown in Section 2.5.
Another example is distributed matchmaking [18] that focuses on increasing the
throughput and scalability of matchmaking services by creation of hierarchy but
does not deal with fault tolerance. Another approach to distribute social knowledge
among agents is to use for instance acquaintance models [13], but this technique
implicitly does not ensure fixed scalability since in the worst case each agent keeps
knowledge about all other agents (see Section 2.5).

2 DYNAMIC HIERARCHICAL TEAMS ARCHITECTURE

We propose the dynamic hierarchical teams (DHT) architecture to take advantage
of both hierarchical and distributed architectures. The pure hierarchical architec-
tures offer the scalability, but they are not designed to be fault-tolerant. On the
other hand, the pure distributed architectures offer the robustness, but they are not
scalable since any middle-agent is connected to all other middle-agents.

2.1 DHT Architecture Description

Assume that a multi-agent system consists of middle-agents and other agents are
referred to as end-agents. Middle-agents form a structure that can be described by
the graph theory. Graph vertices represent middle-agents and graph edges represent
a possibility for direct communication between two middle-agents, i.e., communica-
tion channels.



Middle-Agents Organized in Fault Tolerant and Fixed Scalable Structure 599

The first main difference from the pure hierarchical architecture is that the DHT
architecture is not restricted to have a single root of the tree that serves as a global
middle-agent. The single global middle-agent easily becomes a single point of failure
and possibly also a communication bottleneck. In addition, any other middle-agent
that is not in a leaf position in the tree has similar disadvantages.

Therefore, to provide a more robust architecture, each middle-agent that is not
a leaf in the tree should be backed up by another middle-agent. Groups of these
middle-agents are called teams (see Figure 1). Whenever one of the middle-agents
from the team fails, other middle-agents from the team can subrogate this agent.

Fig. 1. Example of 2-level DHT architecture

During the normal operation of the DHT structure all middle-agents use only
primary communication channels. The usage of secondary communication channels
will be further described in Section 2.6.

The DHT structure is not limited only to two levels, but it can support an N -le-
vel structure. For the cases where N > 2 teams compose a hierarchical structure in
the form of a tree (see Figure 2), i.e., the structure of teams does not contain cycles
and the graph is connected. The tree structure holds only if we consider one edge
of the resulting graph per a set of primary and secondary connections between two
teams.

More complex is the structure of middle-agents (not teams), since this structure
is not limited to be a tree. First of all, a team consists of at least one middle-agent.
To increase fault tolerance, a team should consist of two or more middle-agents.
All members of a team are interconnected via communication channels, forming a
complete graph. The members of the top-most team (Team1) are interconnected
via primary communication channels while the members of other teams are inter-
connected via secondary ones.

If we restrict the DHT structure to contain only teams that consist of only one
middle-agent then we end up with hierarchical structure (a tree). On the other hand,
if we restrict it to one team plus possibly one middle-agent that is not a part of this
team then full-connected network of middle-agents is created, i.e., a structure similar
to the teamwork-based technique [11]. The DHT structure is therefore flexible in
this respect.

Let G be a graph where each middle-agent i in the dynamic hierarchical teams
(DHT) structure is represented by a graph vertex vi ∈ V and each primary or



600 P. Tichý

Fig. 2. Example of 3-level DHT architecture and associated structure of teams

secondary connection among middle-agents i and j is represented by an edge e =
{vi, vj} between vi and vj.

Definition 1 (DHT graph). A graphG will be called DHT graph if there exist non-
empty sets V1, . . . , Vn ⊂ V (G) such that they are pairwise disjoint and V1∪. . .∪Vn 6=
V (G). In that case, the complete subgraph Gi of the graph G induced by the set of
vertices Vi will be called a team of G if all of the following is satisfied:

1. ∀v(v ∈ V (G) \ V1 → ∃j∀w(w ∈ Vj → {v, w} ∈ E(G)))1

2. ∀v(v ∈ V (G) ∧ v /∈ V1 ∪ . . . ∪ Vn) → ∃!j∀w(w /∈ Vj → {v, w} /∈ E(G)))2

3. ∀j((j > 1) ∧ (j ≤ n) → ∃!k((k < j) ∧ ∀v∀w(v ∈ Vj ∧ w ∈ Vk ∈ {v, w} ∈
E(G)) ∧ ∀u∀m(u ∈ Vm ∧ (m < j) ∧ (m 6= k) → {v, u} /∈ E(G)))3

Definition 2 (DHT-λ graph). The graphG is called DHT-λ ifG is DHT and |Vi| =
λ for every i = 1, . . . , n; where λ ∈ N .

2.2 Fault Tolerance in DHT Architecture

The vertex and edge connectivity of a graph (see below) provide information about
possibility to propagate knowledge through the network of middle-agents and com-
munication channels despite failures on these multi-agent system components. Thus,
only the dynamic impact of these failures is studied in this paper. Static impact
of these failures is out of scope of this paper. In that case we study various static
parameters, e.g., a minimal/maximal percentage of end-agents about which social
knowledge stored in middle-agents is lost when k middle-agents fail simultaneously,

1 For all vertices v of G except V1 (since there is no team with lower index than V1)
there has to be a team such that v is connected to all members of this team.

2 For all vertices v that are not members of any team there are only connections to one
team and there cannot be any other connection from v.

3 All members of each team except G1 are connected to all members of exactly one
other team with lower index.



Middle-Agents Organized in Fault Tolerant and Fixed Scalable Structure 601

minimal/average redundancy of the social knowledge occurs, etc. Problems related
to intrusions to the system, e.g., denial of service attack, disruption of connection,
etc. are also out of the scope of this paper.

The fault tolerance of an undirected graph is measured by the vertex and edge
connectivity of a graph [5]. To briefly summarize these terms, a graph G is said to be
λ vertex-connected if the deletion of at most λ−1 vertices leaves the graph connected.
The greatest integer λ such that G is λ vertex-connected is the connectivity κ(G) of
G. A graph is called λ edge-connected if the deletion of at most λ − 1 edges leaves
the graph connected. The greatest integer λ such that G is λ edge-connected is the
edge-connectivity λ(G) of G.

Claim 1. If the graph G is DHT-λ then for each vertex v ∈ V (G) there exists
a vertex w ∈ V1 such that there is a path in G starting from v and ending at w after
removing λ− 1 vertices or λ− 1 edges from G.

Proof. Assume the case where v /∈ V1 since otherwise the path is v itself. For
each team of DHT-λ |Vj | = λ. Thus there are at least λ edges {v, w1} such that
∃j∀w1(w1 ∈ Vj → {v, w1} ∈ E(G)). Since |Vj| = λ then after the elimination of
λ − 1 vertices or λ − 1 edges there exists a path starting from v and ending at w1

where w1 ∈ Vj . If j = 1 then the resulting path is vw1. Otherwise, since |Vj | = λ
the rule 3) from the definition of DHT (definition 1) can be repeatedly applied to
construct a path in G despite the elimination of λ−1 vertices or λ−1 edges starting
from w1 and ending at wk where wk ∈ V1. Therefore in this case the resulting path
is vw1w2 . . . wk. 2

Lemma 1. If the graph G is DHT-λ then G is λ vertex-connected and λ edge-
connected.

Proof.

1) We prove that the graph G of type DHT-λ is λ edge-connected. Suppose (for
contradiction) that there is a λ−1 edge cut set in G. Assume that it separates G
into pieces C1 and C2. Let v1 ∈ V (C1) and v2 ∈ V (C2). We already proved that
after removing λ− 1 edges there exists a path starting from a vertex v1 (or v2)
and ending at w1 (or w2) where w1 ∈ V1 and w2 ∈ V1. If w1 = w2 then a path
from v1 to v2 already exists. Otherwise it remains to prove that any two vertices
w1 6= w2 such that w1 ∈ V1 and w2 ∈ V1 are connected after elimination of
λ− 1 edges from G. At least λ− 1 edge cut set is required to split the complete
graph G1 into two pieces but since G1 6= G thus ∃w3(w3 /∈ V1 ∧ w3 ∈ V (G))
for which ∀vk(vk ∈ V1 → {w3, vk} ∈ E(G) holds since either w3 ∈ V2 or the
number of teams n = 1. Then a subgraph of G induced by V (G1) ∪ {w3} is
a complete graph of order λ + 1 and therefore there is at least one path in G
after elimination of λ− 1 edges from G that leads from w1 to w2. Thus there is
no edge cut set of size λ− 1.

2) We prove that the graph G of type DHT-λ is λ vertex-connected. Suppose
(for contradiction) that there is a λ − 1 vertex cut set in G. Assume that



602 P. Tichý

it separates the graph at least into pieces C1 and C2. Let v1 ∈ V (C1) and
v2 ∈ V (C2). We already proved that after removing λ − 1 vertices there exists
a path starting from a vertex v1 (or v2) and ending at w1 (or w2) where w1 ∈ V1

and w2 ∈ V1. If w1 = w2 then a path from v1 to v2 already exists. Otherwise
since G1 is a complete graph then any two vertices w1 6= w2 where w1 ∈ V (G1)
and w2 ∈ V (G1) are connected after elimination of λ− 1 vertices from G. Thus
there is no vertex cut set of size λ− 1.

2

Claim 2. If the graph G is DHT-λ then the minimum degree δ(G) = λ.

Proof. We already proved that G is λ edge-connected and therefore δ(G) ≥ λ. From
the definition of DHT rule 1) (definition 1) and the fact that V1 ∪ . . . ∪ Vn 6= V (G)
there has to be at least one vertex v′ ∈ V (G) for which v′ /∈ V1 ∪ . . . ∪ Vn holds
and ∃j∀w(w ∈ Vj → {v′, w} ∈ E(G)). Since |Vj| = λ for DHT-λ thus there are
at least λ edges {v′, w} and since from the definition of DHT rule 2) ∃!j∀w(w /∈
Vj → {v′, w} /∈ E(G)) holds there are no more than λ edges {v′, w} and therefore
d(v′) = λ. Since δ(G) ≥ λ and d(v′) = λ thus δ(G) = λ. 2

Theorem 1. If the graph G is DHT-λ then the vertex connectivity κ(G) = λ and
the edge-connectivity λ(G) = λ.

Proof. We already proved that the graph G of type DHT-λ is λ vertex-connected
and λ edge-connected thus it remains to prove that κ(G) ≤ λ and λ(G) ≤ λ. For
every non-trivial graph G the equation κ(G) ≤ λ(G) ≤ δ(G) holds [5]. We already
proved that δ(G) = λ therefore κ(G) ≤ λ and λ(G) ≤ λ. 2

The DHT structure where teams consist of λ middle-agents is therefore fault to-
lerant to simultaneous failure of at least λ−1 middle-agents and also to simultaneous
failure of at least λ− 1 communication channels.

A graphG is calledmaximally fault tolerant if vertex connectivity of the graphG
equals the minimum degree of a graph δ(G) [21].

Theorem 2. The graph G of type DHT-λ is maximally fault tolerant.

Proof. We already proved that the graph G of type DHT-λ has vertex connectivity
κ(G) = λ and we also proved that it has the minimum degree δ(G) = λ. 2

The maximally fault tolerant graph means that there is no bottleneck in the
structure of connections among nodes, i.e., middle-agents in the case of the DHT
architecture.

The problem of directly computing the most survivable deployment of agents
has been introduced recently in [10]. Although, disconnect probabilities of all nodes
have to be known either by collecting statistical data or by experts (that can be hard
to obtain and values are not only application specific but can also vary in time);
then it is possible to compute the optimal survivable deployment. This probabilistic
approach cannot be used in our study since these values are not available.



Middle-Agents Organized in Fault Tolerant and Fixed Scalable Structure 603

In addition, N -version programming [3] can be directly applied to the DHT
architecture to increase robustness of the whole system. Assume that the teams are
of size N and consist of N independently developed middle-agents (by N different
developers, by N different programming languages, etc.). Then the whole structure
of middle-agents is fault tolerant to the simultaneous failure of all middle-agents
that were developed by N − 1 development processes.

2.3 Impact of Middle-Agent Failures

We define the following failure impact attributes to describe and assess the static
effects of failures of middle-agents on loss of social knowledge about end-agents:

Definition 3 (k-failure impact).

Fik – minimal k-failure impact – a minimal percentage of end-agents about which
social knowledge stored in middle-agents is lost when k middle-agents fail simul-
taneously, where k is a natural number.

FIk – maximal k-failure impact – a maximal percentage of end-agents about which
social knowledge stored in middle-agents is lost when k middle-agents fail simul-
taneously, where k is a natural number.

Since the impact of the failure is usually dependent on many factors that can
be hard to predict or to determine, we define minimal (optimistic) and maximal
(pessimistic) values instead of just one.

One example of the failure impact attributes is as follows. Assume that a multi-
agent system contains three middle-agents and one other middle-agent duplicating
the entire knowledge of the first three. Middle-agent1 serves 20% of the end-agents,
Middle-agent2 serves 30%, and the last one, Middle-agent3, serves the remaining
50% of agents. In this case, both Fi1 and FI1 will be equal to 0% since when one
failure occurs, the duplicating agent is still available and it covers the same social
knowledge. Fi2 is also equal to 0% because the minimal impact of two end-agents
failing is the case which both Middle-agent1 and Middle-agent2 fail simultaneously.
FI2 is equal to 50% for the worst case, when Middle-agent3 and the duplicating
agent fail simultaneously.

To define the failure impact more precisely, graph theory [5] can be used to
define equations that do not have restrictions on their usage.

Definition 4 (M-E graph). A graph G will be called M-E if G is a bipartite graph
where partite sets are denoted as Vm(G) and Ve(G). Each middle-agent i is rep-
resented by a graph vertex vi ∈ Vm(G) and end-agent j is represented by a graph
vertex wj ∈ Ve(G). If a middle-agent i holds social knowledge about an end-agent
j then the graph G contains an edge e = {vi, wj}. A set of edges of graph G is de-
noted as E(G) and a set of vertices as V (G). The number of middle-agents |Vm(G)|
is denoted as M and the number of end-agents |Ve(G)| as N .



604 P. Tichý

Then we define the following equations to compute minimal and maximal 1-fai-
lure impact:

Fi1 =
100

N

M

min
i=1

{

N
∑

a=1

COB(a, i)

}

[%] (1)

FI1 =
100

N

M
max
i=1

{

N
∑

a=1

COB(a, i)

}

[%] (2)

where COB(a, i) means that an end-agent a is “covered only by” a middle-agent i.
This function is defined as follows:

COB(a, i) =

{

0, ∃k({vk, wa} ∈ E(G) ∧ k 6= i),
1, otherwise.

(3)

An additional failure does not decrease the failure impact, which means that
FIN ≤ FIN + 1 and FiN ≤ FiN + 1. Similarly, we define the following equations
for two failures that occur simultaneously:

Fi2 =
100

N

i=M,j=M

min
i,j=1,i 6=j

{

N
∑

a=1

COB(a, i, j)

}

[%] (4)

FI2 =
100

N

i=M,j=M
max

i,j=1,i 6=j

{

N
∑

a=1

COB(a, i, j)

}

[%] (5)

where COB(a, i, j) means that an end-agent a is “covered only by” middle-agents i
and j. This function is defined as follows:

COB(a, i, j) =

{

0, ∃k({vk, wa} ∈ E(G) ∧ k 6= i ∧ k 6= j),
1, otherwise.

(6)

The same types of equations can be used to define the middle-agent failure
impact for more than two failures.

The failure impact attributes can be used to rate how much information is
the architecture able to protect in the case of the simultaneous failure of exactly M
middle-agents. Nevertheless, to show the number of simultaneous failures of middle-
agents needed to lose social knowledge about an end-agent, we define the following
minimal redundancy.

Definition 5. The minimal redundancy MR(G) of the graph G of type M-E is
defined as follows:

MR(G) = min
w∈Ve(G)

{dG(w)}. (7)

We would expect that MR has monotonic behavior (or is at least a constant
function) over the six possible basic operations that change G.



Middle-Agents Organized in Fault Tolerant and Fixed Scalable Structure 605

• Add an edge to E(G) thus MR(G) should not be decreased. Assume that
E(H) = E(G) ∪ {e}. Then either MR(H) =MR(G) or MR(H) =MR(G) + 1
holds, i.e., MR(H) ≥ MR(G). Thus MR is monotonic towards an edge addition
and order-preserving.

• Add a vertex to Ve(G) thus MR(G) should not be increased. Assume that
V (H) = V (G) ∪ {w} where w ∈ Ve(H). Then MR(H) = 0, thus MR(H) ≤
MR(G) since MR(G) ≥ 0. Thus MR(G) is monotonic towards a vertex addition
to Ve(G) and order-reversing.

• Add a vertex to Vm(G) thus MR(G) should not change. Assume that V (H) =
V (G) ∪ {v} where v ∈ Vm(H). Then MR(H) = MR(G). Thus MR(G) is
a constant function towards a vertex addition to Vm(G).

• Remove an edge from E(G), remove a vertex from Ve(G), and remove a vertex

from Vm(G) – can be proved in a similar fashion as the three cases above.

To provide a measure4 that can be used without specifying the number of si-
multaneous failures in which we are interested, we define average redundancy.

Definition 6. The average redundancy AR(G) of the graph G of type M-E is de-
fined as follows:

AR(G) =
1

N

∑

v∈Vm(G)

dG(v) =
1

N

∑

w∈Ve(G)

dG(w) =
1

N
|E(G)|. (8)

We would expect that AR has monotonic behavior (or is at least a constant
function) over the six possible basic operations that change G.

• Add an edge to E(G) thus AR(G) should not be increased. Assume that E(H) =
E(G) ∪ {e}. Then AR(H) =AR(G) + 1

N
, i.e., AR(H) > AR(G). Thus AR is

strictly increasing towards an edge addition.

• Add a vertex to Ve(G) thus AR(G) should be decreased. Assume that V (H) =
V (G) ∪ {w} where w ∈ Ve(H). Then AR(H) = AR(G) N

(N+1)
, i.e., AR(H) <

AR(G). Thus AR(G) is strictly decreasing towards a vertex addition to Ve(G).

• Add a vertex to Vm(G) thus AR(G) should not change. Assume that V (H) =
V (G) ∪ {v} where v ∈ Vm(H). Then AR(H) = AR(G). Thus AR(G) is a con-
stant function towards a vertex addition to Vm(G).

• Remove an edge from E(G), remove a vertex from Ve(G), and remove a vertex

from Vm(G) – can be proved in a similar fashion as the three cases above.

4 Measure is used only as a general term in this context. In mathematical measure
theory, a measure is a function which assigns to every element of a given σ-algebra a non-

negative real number or ∞, where the empty set has measure zero and the measure is
countably additive. A family of bipartite graphs is not suitable to be defined as a σ-al-
gebra since a union of bipartite graphs has to be defined in this case in such a way that
these two graphs must have common vertices; that is a very significant restriction.



606 P. Tichý

2.4 Social Knowledge Management in DHT Architecture

We identified several approaches to social knowledge management based on the
amount of social knowledge that is stored in the low-level middle-agents. In this
section we describe breadth knowledge propagation, depth knowledge propagation,
and no knowledge propagation. The efficiency of these three methods can be further
improved by knowledge propagation on demand or by knowledge caching. To for-
mally describe these methods, we first define neighbors, parents, and team members
of a middle-agent.

Definition 7. Assume that a graph G is DHT with G1, . . . , Gn its teams. Then we
define all of the following:

1. Ep(G) ⊆ E(G) as a set of edges where each e ∈ Ep(G) represents a primary
communication channel.

2. Neighbors(v, G) = {w|{v, w} ∈ Ep(G)}.

3. Parents(v, G) = {w|{v, w} ∈ Ep(G)∧ ∃j∀k(w ∈ V (Gj)∧ v ∈ V (Gk) → k > j)}.

4. If v ∈ V (Gj) then TeamMemembers(v, G) = V (Gj) \ {v}.
If v /∈ V (Gj) for every j = 1, . . . , n then TeamMemembers(v, G) = ∅.

2.4.1 Breadth Knowledge Propagation

We define breadth knowledge propagation in such a way that every middle-agent in
the system ultimately knows social information about all end-agents in the system.

The following message routing algorithm is used for routing messages in the
breadth knowledge propagation approach and holds for each middle-agent:

Definition 8 (full message routing). Assume that a graph G is DHT. Let m be
a message instance that the middle-agent represented by vertex v ∈ V (G) received
from a middle-agent represented by vertex vorig ∈ V (G) or from an end-agent for
which vorig /∈ V (G). Let AddOrig(m, V ′(G)) be a subroutine that stores a set of
vertices V ′(G) ⊂ V (G) in the message m and returns this result as a message m′.
Let V orig(m) ⊂ V (G) be a set of vertices stored in the message m such that v ∈
V orig(AddOrig(m, {v}))5. Let Send(H,m) be a subroutine that sends a message m
to all middle-agents that are represented by vertices v ∈ H where H ⊂ V (G). Let
KB(v) be an internal knowledge base of the middle-agent represented by a vertex v.
Let Update(v,m) be a subroutine that updates KB(v) of the middle-agent v based
on message6 m. Let Store(v, w, c) be a subroutine that stores a reference to the

5 AddOrig subroutine is typically used to store a set of vertices into the message m

and then the resulting message m′ is sent to other middle-agents. The receiver of this
messagem′ can retrieve this set of vertices by V orig(m′) and avoid to contact these middle-
agents, thus avoiding circuits in communication.

6 Update subroutine is one of the main parts of a middle-agent where information from
the message is processed and possibly stored to the internal knowledge base.



Middle-Agents Organized in Fault Tolerant and Fixed Scalable Structure 607

middle-agent w under the message context c into KB(v) and let Retrieve(v, c) be
a subroutine that returns H ⊆ V (G) where a vertex w ∈ H iff KB(v) contains w
under the message context c. Let Context(m) be a subroutine that returns context of
a message m, i.e., the same value for all messages that are successors of the original
request message. Then the full message routing in G is defined by the following
algorithm that is performed by a middle-agent v upon receiving a message m:

IF Retrieve(v, Context(m)) = ∅ THEN
{ Update(v,m)

Let R(v) = {w|w ∈ Neighbors(v, G)∧ w 6= vorig ∧ w /∈ V orig(m)}
be a set of potential receivers.

Let S(v) = {w|w ∈ R(v) ∧ w ∈ TeamMemembers(v, G)}
FOR EACH w ∈ R(v)
{ IF w /∈ TeamMemembers(v, G) THEN Send({w}, m)

ELSE Send({w}, AddOrig(m, {v} ∪ (S(v) \ {w})))
}
IF R(v) 6= ∅ THEN Store(v, vorig, Context(m))

}

Based on this message routing in the breadth knowledge propagation we can
distinguish how different types of messages are propagated.

1. Registration, unregistration or modification types of messages are routed to all
middle-agents via the full message routing.

2. A search request is replied to the sender by using only the locally stored know-
ledge.

When an end-agent anywhere in the system contacts a local middle-agent and
passes registration information to it, this middle-agent updates its internal database
based on the incoming message and propagates this information to all neighbor
middle-agents over primary communication channels except the sender and except
any middle-agent that is already mentioned in the incoming message to avoid loops
of size less than four. Since some of the communication channels can be faulty, the
top-most team that consists of more than three middle-agents can have a loop of
size greater than or equal to four. Therefore the context of the message is used to
avoid these types of loops. The breadth knowledge propagation approach holds for
requests for registration or unregistration of an end-agent and also for the modifica-
tion of social knowledge. Search requests can be handled by middle-agents locally
since knowledge about all end-agents in the system is ultimately present in every
middle-agent.

Since by using the breadth knowledge propagation every middle-agent in the
system ultimately knows social knowledge about all end-agents, the static impact
of a middle-agent failure is as low as possible. Assume that vertices of the graph G
of type M-E (see definition 4) represent all middle-agents and end-agents and an



608 P. Tichý

edge {vi, wj} ∈ E(G) only for all middle-agents i and end-agents j, i.e., the com-
plete bipartite graph. Then the average redundancy and minimal redundancy (see
definitions 5 and 6) are computed as follows:

AR(G) = MR(G) =
1

N

∑

v∈Vm(G)

dG(v) =
1

N

∑

v∈Vm(G)

N =
∑

v∈Vm(G)

1 = M (9)

Since the breadth knowledge propagation uses the full message routing, social
knowledge about an end-agent is propagated using N messages (if we do not count
possible acknowledgement messages), where N is the number of middle-agents. So-
cial knowledge is searched using 2 messages.

2.4.2 Depth Knowledge Propagation

The second approach to social knowledge management is depth knowledge propaga-

tion, in which a middle-agent propagates social knowledge only to the higher level
of the hierarchy of teams. In this approach only the topmost middle-agents contain
social knowledge about all end-agents in the system. The following message rout-
ing algorithms are used for routing messages in the depth knowledge propagation
approach and hold for each middle-agent:

Definition 9 (root message routing). Apply the same set of assumptions as for the
full message routing. Then the root message routing in G is defined by the follow-
ing algorithm that is performed by a middle-agent v upon receiving a message m
from vorig:

IF Retrieve(v, Context(m)) = ∅ THEN
{ Update(v,m)

Let R(v) = {w|(w ∈ Parents(v, G) ∪ TeamMemembers(v, G)) ∧
{v, w} ∈ Ep(G) ∧ w 6= vorig ∧ w /∈ V orig(m)}

Let S(v) = {w|w ∈ R(v) ∧ w ∈ TeamMemembers(v, G)}
FOR EACH w /∈ R(v)
{ IF w /∈ TeamMemembers(v, G) THEN Send({w}, m)

ELSE Send({w}, AddOrig(m, {v} ∪ (S(v) \ {w})))
}
IF R(v) 6= ∅ THEN Store(v, vorig, Context(m)).

}

Definition 10 (parent retrieval message routing). Apply the same set of assump-
tions as for the full message routing. Also let Process(v,m) be a subroutine that
changes message m based on information of middle-agent represented by vertex v
and returns true if all objectives of m have been satisfied, and false otherwise. Then
the parent retrieval message routing in G is defined by the following algorithm that
is performed by a middle-agent v upon receiving a message m from vorig:



Middle-Agents Organized in Fault Tolerant and Fixed Scalable Structure 609

IF Retrieve(v, Context(m)) = ∅ THEN
{ IF Process(v,m) THEN Send(Retrieve(v, Context(m)), m)

ELSE
{ FOR EACH w ∈ Parents(v, G)

Send({w}, m)
IF Parents(v, G) 6= ∅ THEN Store(v, vorig, Context(m))
ELSE Send({vorig}, m)

}
}
ELSE Send(Retrieve(v, Context(m)), m)

Based on this message routing in the depth knowledge propagation we can dis-
tinguish how different types of messages are propagated.

1. Registration, unregistration or modification types of messages are routed via the
root message routing.

2. If a search request can be satisfied using local knowledge then reply with the
result to the requester.

3. If a search request cannot be satisfied using local knowledge then it is routed
via the parent retrieval message routing (if the set of receivers is non empty);
otherwise, reply to the requester that the search was unsuccessful.

4. Forward the result of the search request back to the original requester (stored
in vorig under the same context as the result).

The static impact of middle-agent failure in the dynamic hierarchical teamwork
that uses the depth knowledge propagation is computed as follows. Assume that the
graph G is DHT. Assume that the vertices of the M-E graph H = (V (H), E(H)),
where V (H) ⊃ V (G), represent all end-agents and middle-agents and an edge
{vi, wj} ∈ E(H) if and only if middle-agent i holds social knowledge about end-
agent j. Assume that it is possible to compute the average number of vertices that
have to be traversed by the root message routing to get from v to w (excluding w and
including v if v 6= w) denoted as AvHeight(G), where v ∈ V (G) and w ∈ V1 hold.
Assume that it is possible to compute the minimal number of vertices that have to be
traversed by the root message routing to get from v to w denoted as MinHeight(G).
Then the average redundancy and minimal redundancy are computed as follows:

AR(H) =
1

N

∑

v∈Ve(H)

dH(v) = AvHeight(G) + |V1| (10)

MR(H) = min
v∈Ve(H)

{dH(v)} = MinHeight(G) + |V1| (11)

Since the depth knowledge propagation uses the root message routing, social
knowledge about an end-agent is on average propagated using AvHeight(G) + |V1|
messages (if we do not count possible acknowledgement messages). Social knowledge



610 P. Tichý

1. E-Agent1 sends a registration request to its local middle-agent (M-A 4).

2. M-A 4 forwards the registration information to M-A 22.

3. M-A 22 forwards the registration information to M-A 12.

4. M-A 12 forwards the registration information to M-A 11 and 13.

5. E-Agent2 sends a search request to its local middle-agent (M-A 7).

6. M-A 7 forwards the search request to M-A 32 since it cannot be satisfied locally.

7. M-A 32 forwards the search request to M-A 13.

8. M-A 13 is able to satisfy the search request and replies with the search result to
M-A 32.

9. M-A 32 propagates the search result back to M-A 7.

10. M-A 7 finally replies with the search result to E-Agent2.

Fig. 3. Depth knowledge propagation example. Only interactions that are directly related
to the registration process and to the search process are described

is searched via the parent retrieval message routing; therefore, it uses on average
2AvHeight(G) messages.

2.4.3 No Knowledge Propagation

The last approach to social knowledge propagation is no knowledge propagation. In
this approach the end-agents register, unregister, and modify registration informa-
tion only at the local middle-agents; this information is not further propagated.



Middle-Agents Organized in Fault Tolerant and Fixed Scalable Structure 611

This type of technique is used for instance in multi-agent systems that are FIPA
compliant [6] as JADE [8].

Definition 11 (full retrieval message routing). Apply the same set of assumptions
as for the parent retrieval message routing. Let StoreExpectedReply(v, w, c,m) be
a subroutine that stores a reference to middle-agent represented by a vertex w under
the message context c into KB(v) and RemoveExpectedReply(v, w, c) be a subrou-
tine that removes a reference to middle-agent represented by a vertex w under the
message context c from KB(v). Let RetrieveExpectedReplies(v, c) be a subroutine
that returns a set of vertices stored in KB(v) under the message context c. Let
AddReply(v, c,m) be a subroutine that stores information from m to the database
of v under the context c and GetReply(v, c) retrieves composite message based on
previously stored information in KB(v) under the message context c. Then the full
retrieval message routing inG is defined by the following algorithm that is performed
by a middle-agent v upon receiving a message m from vorig:

IF Retrieve(v, Context(m)) = ∅ THEN
{ IF Process(v,m) THEN Send(Retrieve(v, Context(m)), m)

ELSE
{ Let R(v) = {w|w ∈ Neighbors(v, G)∧ w 6= vorig ∧ w /∈ V orig(m)}

Let S(v) = {w|w ∈ R(v) ∧ w ∈ TeamMemembers(v, G)}
FOR EACH w ∈ R(v)
{ StoreExpectedReply(v, w, Context(m))

IF w /∈ TeamMemembers(v, G) THEN Send({w}, m)
ELSE Send({w}, AddOrig(m, {v} ∪ (S(v) \ {w})))

}
IF R(v) 6= ∅ THEN Store(v, vorig, Context(m))
ELSE Send({vorig}, m)

}
}
ELSE

IF vorig ∈ RetrieveExpectedReplies(v, Context(m)) THEN
{ AddReply(v, Context(m), m)

RemoveExpectedReply(v, vorig, Context(m))
IF RetrieveExpectedReplies(v, c) = ∅ THEN

Send(Retrieve(v, Context(m)), GetReply(v, Context(m)))
}

The no knowledge propagation approach can be described by the following rules
that hold for each middle-agent:

1. Registration, unregistration or modification types of messages are handled lo-
cally.

2. If a search request can be satisfied using the locally stored knowledge then reply
to the requester with the result.



612 P. Tichý

3. If a search request cannot be satisfied using the locally stored knowledge then
it is routed via the full retrieval message routing (if the set of receivers is non
empty); otherwise, reply to the requester with an unsuccessful result.

4. Store each result of a search request.

5. When all results of the search request are stored, assemble the results of the
search request into a reply and send the reply back to the original requester
(stored in vorig under the same context as the result).

There is no communication among middle-agents during the registration phase,
but there is much more communication during the search for information and the
update of information. Since there is no clue where to search for any information, the
searching process must be exhaustive. All middle-agents, both the ones upstream at
the top of the hierarchy and the ones downstream in the lower levels of the hierarchy,
must be searched.

The requester can, however, limit the search space. The information about the
depth of search can be added to the request or the requester can limit the number
of results (for instance specified by FIPA).

Since by using the no knowledge propagation only a local middle-agent knows
the social information about an end-agent, the static impact of a middle-agent failure
is higher than when other methods are used. Assume a graph G of type M-E. The
average redundancy and minimal redundancy are obviously equal to 1.

AR(G) = MR(G) =
1

N

∑

v∈Ve(G)

dG(v) =
1

N

∑

v∈Ve(G)

1 = 1 (12)

Social knowledge about an end-agent is propagated using 1 message (if we do
not count a possible acknowledgement message). Social knowledge is searched via
the full retrieval message routing; therefore, it uses 2N messages (if the search is
not limited), where N is the number of middle-agents.

2.4.4 Knowledge Propagation on Demand

Both depth knowledge propagation and no knowledge propagation can be further
improved with knowledge propagation on demand. Using this technique, information
is discovered on demand and remembered for further use. Knowledge propagation
on demand can be described by the following additional rule that holds for each
middle-agent in the hierarchy:

1. During the forwarding of the result of the search request remember the infor-
mation that is contained in the result of the search.

Suppose a middle-agent needs to contact the parent middle-agent to search for
information. When a response propagates back with possibly a positive result,
middle-agents remember this information along the propagation path.



Middle-Agents Organized in Fault Tolerant and Fixed Scalable Structure 613

Propagation on demand brings one complication to social knowledge update. To
assure that information gathered on demand is up-to-date, we must introduce one
of the refresh mechanisms.

Subscribe and advertise mechanism. When a middle-agent remembers some
social knowledge, it subscribes for the update of this knowledge with the middle-
agent that supplied the knowledge. When this knowledge gets updated then
all middle-agents on the path of this update also send updates to all of their
subscribers of this knowledge. This mechanism is used for instance in KQML
specification [9].

Time stamping mechanism. When a middle-agent stores social knowledge ga-
thered on demand, this knowledge is time-stamped. The middle-agent can then
examine the time-stamp to determine whether this knowledge is still valid or
too old to be used. The examination process happens either periodically or at
the time when this knowledge is accessed. The time stamping is well known
mechanism used for instance for revocation of certificates [15].

2.4.5 Knowledge Caching

Both depth knowledge propagation and no knowledge propagation can be further
improved by using the knowledge caching mechanism. The knowledge caching me-
chanism can be described by the following additional rule that holds for each middle-
agent in the hierarchy:

1. During the forwarding of the search result only remember the knowledge that is
contained in the result if the receiver is the original requester of the search, i.e.,
the receiver is not a middle-agent.

Knowledge caching is an alternative approach to knowledge propagation on de-
mand in which knowledge is not remembered all the way back to the requester,
but only at the last middle-agent on the path to the requester. In this way the
knowledge redundancy is very low despite the fact that knowledge is located at the
proper places.

Note that we omitted describing all the cases in which the search was unsuccess-
ful. The subscribe-and-advertise or time stamping mechanism has to be used again
to ensure that the registration information is up-to-date.

All of these techniques are intended to work behind the scenes as part of the
agent platform functionality. The hierarchy of middle-agents should be transparent
to end-agents in the system. The end-agents register and modify information using
their local middle-agent and ask for information again from their local middle-agent.

2.5 Scalability of DHT Architecture

Although the term scalability is frequently used it is not precisely defined so far.
Researchers in the parallel processing community have been using for instance Am-
dahl’s Law and Gustafson’s Law [7] and therefore tie notions of scalability to notions



614 P. Tichý

of speedup. Nevertheless, speedup is not the main concern in the area of social
knowledge since there is not one task that is split and solved in parallel. Thus these
definitions are not sufficient and we present several other ones.

“A system is said to be scalable if it can handle the addition of users and
resources without suffering a noticeable loss of performance or increase in admi-
nistrative complexity.” [16] “A scalable parallel processing platform is a computer
architecture that is composed of computing elements. New computing element can
be added to the scalable parallel processing platform at a fixed incremental cost.” [12]

A formal definition of scalability in distributed applications is given in [19].
An important aspect of this definition is the distinction between performance and
extensibility since the previous definitions are based on just one of these attributes.
Very roughly, an application A is scalable in an attribute a if A can accommodate
a growth of a up to defined maximum, if it is possible to compensate a performance
degradation caused by increase of a, and if the costs that compensate performance
degradation are limited.

To determine scalability without measuring resulting performance we can use
definitions that are based on the extensibility and evaluate whether the cost to add
new computing element is fixed. Thus we reformulate the scalability definition that
is based on extensibility [12] to be used in the area of social knowledge architectures.

Definition 12 (fixed scalability). Let G = (V (G), E(G)) be a graph that repre-
sents the structure of middle-agents and assume that G is of type7 Θ. Then let H
be a graph of type Θ such that V (H) = V (G)∪ V δ(H) and E(H) = E(G)∪Eδ(H)
where V δ(H) is a set of vertices that were added to V (G) and Eδ(H) is a set of edges
where each edge is adjacent to at least one vertex from V δ(H). If for each such G
there exists ε > 0 such that for each V δ(H) there is Eδ(H) with |Eδ(H)| ≤ ε·|V δ(H)|
then G is called fixed scalable.

Theorem 3. If the graph G is DHT then G is fixed scalable.

Proof. Assume that G′ ⊂ G is such team of G where its order λ is the biggest
one. Assume that H ⊃ G such that V (H) = V (G) ∪ {v}. Then a set of edges
Eδ(H) has to satisfy for instance that ∀w(w ∈ V (G′) ↔ {v, w} ∈ Eδ(H)) to ensure
that H is also DHT8. Therefore |Eδ(H)| = λ. We can repeat this process for all
v ∈ V δ(H ′) where H ′ ⊃ G, H ′ is again DHT, and where V (H ′) = V (G) ∪ V δ(H ′)
and E(H ′) = E(G) ∪ Eδ(H ′) hold. Therefore for each V δ(H ′) exists Eδ(H ′) such
that |Eδ(H ′)| = λ · |V δ(H ′)|. 2

Note that, for instance, the centralized architecture is obviously not fixed scal-
able since it cannot accommodate more than one middle-agent. Also, for instance,

7 The type Θ is for instance DHT, structure defined by distributed matchmaking,
teamwork-based, etc.

8 Note that to ensure fixed scalability as defined above there is not requirement on the
final structure of edges. Any structure that satisfies DHT type of graph is sufficient.



Middle-Agents Organized in Fault Tolerant and Fixed Scalable Structure 615

the teamwork-based technique [11] is not fixed scalable since the structure of middle-
agents has to form a complete graph. Thus we present Table 1 of fixed scalability
for various structures of social knowledge distribution.

Social knowledge distribution Fixed scalable?

Centralized No

Distributed Acquaintance models No†
Teamwork-based technique No

Hybrid Distributed matchmaking Yes

Dynamic hierarchical teams Yes

† Note that end-agents are used in this case instead of middle-agents. Also note that if
we ensure that each end-agent has a limited number of connections to other end-agents

than these structures become fixed scalable.

Table 1. Fixed scalability of various types of social knowledge distributions

2.6 Reconfiguration in DHT Architecture

In Figure 1 we present the concept of primary and secondary communication chan-
nels. During normal operation of the DHT architecture all middle-agents use only
primary communication channels. Secondary communication channels are used in
the case in which at least one of the following occurs:

• primary communication channels failed to transmit messages; or

• a receiving middle-agent failed.

These failures can be detected by various failure detection mechanisms, e.g.,
heartbeat mechanism [1], meta-agent observation [17], etc.

The secondary communication channel does not mean “second”; there can be
more than one secondary communication channel per a primary one. When a middle-
agent is unable to use the primary communication channel then one of the secondary
ones is used instead. The structure of interconnections of the primary communica-
tion channels is dynamically reshaped by this change.

The same process of dynamic reconfiguration is used when a communication
channel fails to transmit a message. In this case also the sender middle-agent will
use the secondary one. Note that the secondary communication channels replace
only the primary ones that failed.

Another type of dynamic reconfiguration occurs when a new (or possibly cloned)
middle-agent tries to register into the system or a previously failed middle-agent tries
to reregister into the system.

3 EXPERIMENTS WITH DHT ARCHITECTURE

To test the robustness of the DHT architecture and to test various knowledge propa-
gation methods in practical experiments, we created the test case setting as follows.



616 P. Tichý

There are twelve possible types of end-agents. An end-agent that is registered into
the system has one or two from the six possible capabilities. An end-agent location
is randomly9 chosen, i.e., an end-agent registers with one of the local middle-agents
(M-As). The DHT structure of middle-agents has been practically tested in the
Chilled Water System based on the Reduced Scale Advanced Development (RSAD)
model that is a reconfigurable fluid system test platform, i.e., a chilled water part of
a shipboard automation for US Navy vessels. Nevertheless, the following experimen-
tal results have been obtained on the same system where all M-As and end-agents
run on a single computer Pentium III/800MHz as separate threads under Agent-OS
[14, 20]. The test case consists of an initial phase and a test phase described as
follows:

1. During the initial phase 20 randomly chosen end-agents are created and regis-
tered into the system.

2. The test phase consists of 1000 actions. Three types of actions can occur:

Create a new end-agent. A new end-agent of a randomly chosen type is created
and registered to one randomly chosen M-A.

Delete one of the existing end-agents. One randomly chosen end agent is un-
registered from its local M-A and then the end-agent is deleted.

Search for a capability. One randomly chosen end-agent sends a search request
to its local M-A for a randomly chosen capability.

The distribution of probability to choose an action is as follows. The probability
that the search action is chosen, denoted as PS, is used as a parameter for each test
case. The create and delete actions each has in every test case the same probability
to be chosen, i.e., 1−PS

2
.

3.1 Comparison by the Number of Messages

The purpose of this test case is to determine which knowledge propagation method is
the best one to be used when considering the number of messages, i.e., which method
needs fewer messages for a completion of the test case. The testing architecture
consists of one global middle-agent (GM-A) and five local middle-agents that have
GM-A as their parent. The goal of these tests is not to test robustness since there
is only one GM-A used, but to compare presented knowledge propagation methods.

From the measurements presented in Figure 4 we can conclude that the no
knowledge propagation method gives the best results in the case in which the prob-
ability that an agent uses the search action is less than 35%. The depth knowledge
propagation method gives the best results in the case in which PS is greater than
35% and less than 82% and the breadth knowledge propagation method gives the
best results otherwise. These results have been proved theoretically as well. The

9 A uniform distribution of probability is used whenever we use the term randomly
chosen.



Middle-Agents Organized in Fault Tolerant and Fixed Scalable Structure 617

Fig. 4. Test case of knowledge propagation methods for the number of messages. The
X-axis represents the probability that the search action is chosen, denoted as PS.
The Y-axis represents the total number of messages in the test run, where only
messages that are related to the registration, unregistration, and to the search process
are considered. Each value of each graph is the average (arithmetic mean) of 50
measurements

depth knowledge propagation method is nearly independent of the search probabi-
lity parameter since the average deviation is 276, whereas values measured for the
other two methods have the average deviation greater than 1642.

3.2 Comparison by Total Running Time

Another way to compare the knowledge propagation methods is to measure the
total running time that is needed for the completion of the test case. The goal is to
measure the dependency of the total running time on the probability that a search
action is chosen, PS. The same test environment as in the previous test case is used.

We can conclude from the measurements presented in Figure 5 that the no know-
ledge propagation method gives the best results in cases where the probability that
an agent uses the search action is less than 22%. The depth knowledge propagation
method gives the best results in cases where PS is in the range of 22% to 68%. The
breadth knowledge propagation method gives the best results in cases where PS is
greater than 68%. All three crossing points on the knowledge propagation graphs
are at similar positions as in Figure 4, although the shapes of the dependency on PS

are different. On the left side of the graph the probability that an agent is created is
higher (50%) than on the right side of the graph (0%). The left sides of the graphs



618 P. Tichý

Fig. 5. The test case of knowledge propagation methods for the total running time. The
X-axis represents the probability of choosing the search action, PS. The Y-axis rep-
resents total running time of the test run in seconds. Each value of each graph is the
average (arithmetic mean) of 50 measurements

are significantly elevated since an agent has a very long creation time due to the full
initialization of its planning templates.

3.3 Experiments with Robustness in DHT Architecture

To test the robustness of the DHT architecture in practical experiments, we cre-
ated an experiment where the structure of middle-agents consists of three GM-As
that form a team plus six M-As that are evenly distributed using their primary
connections among the three GM-As. The test case should prove that the DHT
architecture with teams that consist of N middle-agents (3 in this test case) is able
to withstand at least N − 1 failures of the middle-agents.

After 150 seconds the first GM-A simulates a failure and the system is not able to
use it to propagate requests. The requests that are sent to this GM-A stay pending
until the system discovers that it failed. The local M-As that are initially connected



Middle-Agents Organized in Fault Tolerant and Fixed Scalable Structure 619

Fig. 6. Two failures of the global middle-agents in the DHT architecture with three mem-
bers of the team. The architecture uses the depth knowledge propagation method.
The graph depicts the communication frequency where the test run is split into time
slots of 20 seconds (X-axis) with the number of messages in each time slot on the
Z-axis connected by a line. The first graph on the Y-axis labeled GM-A1 is filtered
in such a way that only outgoing messages from the first global middle-agent are
considered, and so on

to the first GM-A dynamically switch to another GM-A, in this case to the second
one.

After 300 seconds from the beginning of the test case also the second GM-A
simulates a failure. In this case also the local M-As that are initially connected to
the first and to the second GM-A dynamically switch to the third GM-A and the
system is still able to respond to the incoming requests.

After 450 seconds from the beginning of the test case the first GM-A is repaired,
followed by the second GM-A 150 seconds later. The local M-As dynamically switch
back to their preferred GM-As again.

3.4 Comparison of Social Knowledge Distributions

To compare the robustness of various types of social knowledge distributions, we
selected several examples of centralized, distributed, hierarchical, and DHT archi-
tectures. The goal is to evaluate these architectures based on the failure impact and
on the average (AR) and minimal (MR) redundancy (see definitions 5 and 6), i.e.,
static impact of one or two simultaneous failures.



620 P. Tichý

Social knowledge distribution Fi1 FI1 Fi2 FI2 AR
[%] [%] [%] [%] MR

Centralized 1 center 100 100 100 100 1

Distributed 2 centers (covering 40%,60%) 40 60 100 100 1
N equally distr. (N > 1) 100

N

100

N

200

N

200

N
1

Hierarchical with 2 centers (40%,60%) + 1 glob. 0 0 0 60 2
2 levels (DTH-1) N equally distr. + 1 global 0 0 0 100

N
2

DHT with 2 centers (40%,60%)† + 2 glb. 0 0 0 0 3
1 team N equally distr. + 2 global† 0 0 0 0 3
(2 levels) N global centers‡ 0 0 0 0 N

Teamwork-based N global centers 0 0 0 0 N

† The depth knowledge propagation is used.

‡ The breadth knowledge propagation is used. Note that the description “N global
centers” does not imply a team of size N . It only means that all N middle-agents hold

social knowledge about all end-agents in the system.

Table 2. Failure impact and redundancy of various types of social knowledge distributions

From the results presented in Table 2 we can conclude that:

• Centralized social knowledge obviously does not have any robustness since any
failure results in 100% failure impact, i.e., the whole system is affected.

• Distributed social knowledge has lower failure impact than the centralized one,
but it is not possible to obtain an impact of 0% since this knowledge is not
redundant.

• If there is at least one redundant global center that covers 100% of the so-
cial knowledge in the system (all end-agents), i.e., the hierarchical, DHT, and
teamwork-based architectures, the system is tolerant to one failure and the failu-
re impact for more than one failure is also lowered.

• The DHT architecture that has at least two global centers is tolerant to at least
two failures that occur simultaneously. When this architecture uses the breadth
knowledge propagation method, it has the highest possible AR and MR.

• The teamwork-based architecture has also the highest possible AR and MR,
but this architecture does not offer the flexibility to decrease the number of
connections among middle-agents to improve scalability.

4 CONCLUSION

We have proposed and implemented the DHT structure of middle-agents that can
be used to increase the fault-tolerance of a multi-agent system. We have proved that
the structure which consists of teams of size N is fault tolerant to failure of N − 1
middle-agents or N − 1 communication channels. Moreover, we have proved that
the structure is maximally fault tolerant. We have proved that the DHT structure



Middle-Agents Organized in Fault Tolerant and Fixed Scalable Structure 621

is fixed scalable, i.e., can be scaled-up at a fixed incremental cost. We defined
several methods for social knowledge propagation, such as breadth, depth, and no
knowledge propagation and corresponding search techniques.

We have experimentally tested the proposed knowledge propagation methods in
DHT structure to determine their advantages and disadvantages on a real multi-
agent system. The experiments revealed that all proposed knowledge propagation
methods can be efficiently used in presented testing environment based on the prob-
ability PS that end-agents request the search action when measuring number of
messages. We have experimentally tested robustness and reconfiguration of pro-
posed architecture on a real multi-agent system with successful results.

REFERENCES

[1] Aguilera, M. K.—Chen, W.—Toueg, S.: Heartbeat: A Timeout-free Fail-
ure Detector for Quiescent Reliable Communication. In Proceedings of the 11th
International Workshop on Distributed Algorithms, Springer-Verlag, Berlin, 1997,

pp. 126–140.

[2] Byrne, C.—Edwards, P.: Refinement in Agent Groups. In (Weiss, G., Sen, S.,
eds.) Adaption and Learning in Multi-Agent Systems. Lecture Notes in Artificial
Intelligence 1042, Springer-Verlag, Heidelberg, 1996, pp. 22–39.

[3] Chen, L.—Avizienis, A.: N-version Programming: A Fault-Tolerance Approach to
Reliability of Software Operation. In Digest of Papers of the 8th Annual International
Conference on Fault-Tolerant Computing, Toulouse, France, 1978.

[4] Decker, K.—Sycara, K.—Williamson, M.: Middle-Agents for the Inter-

net. In Proceedings of the 15th IJCAI, Morgan Kaufmann, Nagoya, Japan, 1997,
pp. 578–583.

[5] Diestel, R.: Graph Theory. Graduate Texts in Mathematics. Vol. 173, Springer-
Verlag, New York, 2000.

[6] FIPA: The Foundation for Intelligent Physical Agents. http://www.fipa.org,
Geneva, Switzerland, 1997.

[7] Gustafson, J. L.: Reevaluating Amdahl’s Law. CACM, Vol. 31, 1988, No. 5,
pp. 532–533.

[8] JADE: Java Agent DEvelopment Framework. Telecom Italia Lab, Torino, Italy,
http://sharon.cselt.it/projects/jade/.

[9] Finin, T.—McKay, D.—Fritzson, R.: An Overview of KQML: A Knowledge
Query and Manipulation Language, Technical Report, UMBC, Baltimore, 1992.

[10] Kraus, S.—Subrahmanian, V. S.—Tas, N. C.: Probabilistically Survivable
MASs. In proceedings of IJCAI-03, Acapulco, Mexico, 2003, pp. 676–679.

[11] Kumar, S.—Cohen, P. R.: Towards a Fault-Tolerant Multi-Agent System Archi-
tecture. In Proceedings of the 4th International Conference on Autonomous Agents,
Barcelona, Spain, 2000, pp. 459–466.

[12] Luke, E. A.: Defining and Measuring Scalability. In Scalable Parallel Libraries
Conference, Mississippi, USA, 1994.



622 P. Tichý

[13] Mař́ık, V.—Pěchouček, M.—Štěpánková, O.: Social Knowledge in Multi-

Agent Systems. In Multi-Agent Systems and Applications, LNAI 2086, Springer,
Berlin, 2001, pp. 211–245.

[14] Maturana, F.—Staron, R.—Tichý, P.—Šlechta, P.: Autonomous Agent Ar-

chitecture for Industrial Distributed Control. 56th Meeting of the Society for Machi-
nery Failure Prevention Technology, Sec. 1A, Virginia Beach, 2002, pp. 147–156.

[15] Naor, M.—Nissim, K.: Certificate Revocation and Certificate Update. In Pro-

ceedings of the 7th USENIX Security Symposium, San Antonio, Texas, USA, 1998,
pp. 217–228.

[16] Neuman, B. C.: Scale in Distributed Systems. In Readings in Distributed Comput-
ing Systems. IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 463–489.

[17] Pěchouček, M.—Mac̊urek, F.—Tichý, P.—Štěpánková, O.—Mař́ık, V.:
Meta-agent: A Workflow Mediator in Multi-Agent Systems. In (Watson, I., Gor-
don, J., McIntosh, A., eds.) Intelligent Workflow and Process Management: The New

Frontier for AI in Business IJCAI-99, Morgan Kaufmann Publishers, San Francisco,
1999, pp. 110–116.

[18] Pothipruk, P.—Lalitrojwong, P.: An Ontology-based Multi-agent System for

Matchmaking. ICITA 2002, section 201-2, Bathurst, Australia, 2002.

[19] van Steen, M.—van der Zijden, S.—Sips, H. J.: Software Engineering for
Scalable Distributed Applications. The 22nd COMPSAC ’98, IEEE Computer Society

0-8186-8585-9, 1998, pp. 285–293.

[20] Tichý, P.—Šlechta, P.—Maturana, F.—Balasubramanian, S.: Industrial
MAS for Planning and Control. In (Mař́ık, V., Štěpánková, O., Krautwurmová, H.,

Luck, M., eds.) Proceedings of Multi-Agent Systems and Applications II: 9th ECCAI-
ACAI/EASSS 2001, AEMAS 2001, HoloMAS 2001, LNAI 2322, Springer-Verlag,
Berlin, 2002, pp. 280–295.

[21] Vadapalli, P.—Srimani, P. K.: A New Family of Cayley Graph Interconnection
Networks of Constant Degree Four. In IEEE Transactions on Parallel and Distributed
Systems, Vol. 7, 1996, No. 1, pp. 26–32.

Pavel Tih�y graduated at the Czech Technical University in
Prague (1997), assigned to Professor V. Mař́ık as a graduate
student in the department of Cybernetics (PhD. – 2004). He spe-
cializes in fields of artificial intelligence and multi-agent systems.
He has been working for the Rockwell Automation Research Cen-
ter in Prague since 1995. His work includes automation, soft-
ware development, enterprise controls, Shipboard Automation,
and MAS tools and architectures.


