30 research outputs found

    Relational Symbolic Execution

    Full text link
    Symbolic execution is a classical program analysis technique used to show that programs satisfy or violate given specifications. In this work we generalize symbolic execution to support program analysis for relational specifications in the form of relational properties - these are properties about two runs of two programs on related inputs, or about two executions of a single program on related inputs. Relational properties are useful to formalize notions in security and privacy, and to reason about program optimizations. We design a relational symbolic execution engine, named RelSym which supports interactive refutation, as well as proving of relational properties for programs written in a language with arrays and for-like loops

    Proving Differential Privacy with Shadow Execution

    Full text link
    Recent work on formal verification of differential privacy shows a trend toward usability and expressiveness -- generating a correctness proof of sophisticated algorithm while minimizing the annotation burden on programmers. Sometimes, combining those two requires substantial changes to program logics: one recent paper is able to verify Report Noisy Max automatically, but it involves a complex verification system using customized program logics and verifiers. In this paper, we propose a new proof technique, called shadow execution, and embed it into a language called ShadowDP. ShadowDP uses shadow execution to generate proofs of differential privacy with very few programmer annotations and without relying on customized logics and verifiers. In addition to verifying Report Noisy Max, we show that it can verify a new variant of Sparse Vector that reports the gap between some noisy query answers and the noisy threshold. Moreover, ShadowDP reduces the complexity of verification: for all of the algorithms we have evaluated, type checking and verification in total takes at most 3 seconds, while prior work takes minutes on the same algorithms.Comment: 23 pages, 12 figures, PLDI'1

    Coupled Relational Symbolic Execution for Differential Privacy

    Get PDF
    Differential privacy is a de facto standard in data privacy with applications in the private and public sectors. Most of the techniques that achieve differential privacy are based on a judicious use of randomness. However, reasoning about randomized programs is difficult and error prone. For this reason, several techniques have been recently proposed to support designer in proving programs differentially private or in finding violations to it. In this work we propose a technique based on symbolic execution for reasoning about differential privacy. Symbolic execution is a classic technique used for testing, counterexample generation and to prove absence of bugs. Here we use symbolic execution to support these tasks specifically for differential privacy. To achieve this goal, we leverage two ideas that have been already proven useful in formal reasoning about differential privacy: relational reasoning and probabilistic coupling. Our technique integrates these two ideas and shows how such a combination can be used to both verify and find violations to differential privacy
    corecore