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Abstract. Differential privacy is a de facto standard in data privacy
with applications in the private and public sectors. Most of the tech-
niques that achieve differential privacy are based on a judicious use of
randomness. However, reasoning about randomized programs is difficult
and error prone. For this reason, several techniques have been recently
proposed to support designer in proving programs differentially private
or in finding violations to it.
In this work we propose a technique based on symbolic execution for
reasoning about differential privacy. Symbolic execution is a classic tech-
nique used for testing, counterexample generation and to prove absence of
bugs. Here we use symbolic execution to support these tasks specifically
for differential privacy. To achieve this goal, we design a relational sym-
bolic execution technique which supports reasoning about probabilistic
coupling, a formal notion that has been shown useful to structure proofs
of differential privacy. We show how our technique can be used to both
verify and find violations to differential privacy.

1 Introduction

Differential Privacy [8] has become a de facto gold standard definition of pri-
vacy for statistical analysis. This success is mostly due to the generality of the
definition, its robustness and compositionality. However, getting differential pri-
vacy right in practice is a hard task. Even privacy experts have released fragile
code subject to attacks [13, 17] and published incorrect algorithms [16]. This
challenge has motivated the development of techniques to support programmers
to show their algorithms differentially private. Among the techniques that have
been proposed there are type systems [12,18,20,24,26], methods based on model
checking and program analysis [2,15,22,23], and program logics [3,4,21]. Several
works have also focused on developing techniques to find violations to differen-
tial privacy [2, 5, 6, 23, 27]. Most of these works focus only on either verifying
a program differentially private or finding violations. Exceptions are the recent
works by Barthe et al. [2] and Wang et al. [23] (developed concurrently to our
work) which propose method that can instead address both.

Motivated by this picture, we propose a new technique named Coupled Rela-
tional Symbolic Execution (CRSE), which supports proving and finding violation
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to differential privacy. Our technique is based on two essential ingredients: rela-
tional symbolic execution [10] and approximate probabilistic couplings [3].

Relational Symbolic Execution. Symbolic execution is a classic technique
used for bug finding, testing and proving. In symbolic execution an evaluator ex-
ecutes the program which consumes symbolic inputs instead of concrete ones.
The evaluator follows, potentially, all the execution paths the program could
take and collects constraints over the symbolic values, corresponding to these
paths. Similarly, in relational symbolic execution [10] (RSE) one is concerned
with bug finding, testing, or proving for relational properties. These are prop-
erties about two executions of two potentially different programs. RSE executes
two potentially different programs in a symbolic fashion and exploits relational
assumptions about the inputs or the programs in order to reduce the number
of states to analyze. This is effective when the codes of the two programs share
some similarities, and when the property under consideration is relational in
nature, as in the case of differential privacy.

Approximate Probabilistic Couplings. Probabilistic coupling is a proof
technique useful to lift a relation over the support of a joint distribution to a
relation over the two probability marginals of the joint. This allows one to reason
about relations between probability distributions by reasoning about relations
on their support, which can be usually done in a symbolic way. In this approach
the actual probabilistic reasoning is confined to the soundness of the verification
system, rather than being spread everywhere in the verification effort. A relax-
ation of the notion of coupling, called approximate probabilistic coupling [3, 4],
has been designed to reason about differential privacy. This can be seen as a
regular probabilistic coupling with some additional parameters describing how
close the two probability distribution are.

In this work, we combine these two approaches in a framework called Coupled
Relational Symbolic Execution. In this framework, a program is executed in a
relational and symbolic way. When some probabilistic primitive is executed,
CRSE introduces constraints corresponding to the existence of an approximate
probabilistic coupling on the output. These constraints are combined with the
constraints on the execution traces generated by symbolically and relationally
executing other non-probabilistic commands. These combined constraints can
be exploited to reduce the number of states to analyze. When the execution is
concluded CRSE checks whether there is a coupling between the two outputs,
or whether there is some violation to the coupling. We show the soundness of
this approach for both proving and refuting differential privacy. However, for
finding violations, one cannot reason only symbolically, and since checking a
coupling directly can be computationally expensive, we devise several heuristics
which can be used to facilitate this task. Using these techniques, CRSE allows
one to verify differential privacy for an interesting class of programs, including
programs working on countable input and output domains, and to find violations
to programs that are not differentially private.

CRSE is not a replacement for other techniques that have been proposed for
the same task, it should be seen as an additional method to put in the set of
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tools of the privacy developer which provides a high level of generality. Indeed,
by being a totally symbolic technique, it can leverage a plethora of current
technologies such as SMT solvers, algebraic solvers, and numeric solvers.

Summarizing, the contribution of our work are:

– We combine relational symbolic execution and approximate probabilistic
coupling in a new technique: Coupled Relational Symbolic Execution.

– We show CRSE sound for proving programs differentially private
– We devise a set of heuristic - one of them sound, and the others useful - that

can help a programmer in finding violations to differential privacy.
– We show how CRSE can help in proving and refuting differential privacy for

an interesting class of programs

Most of the proofs are omitted here, more details can be found in [9, 11].

2 CRSE Informally

We will introduce CRSE through three examples of programs showing potential
errors in implementations of differentially private algorithms. Informally, a ran-
domized function A over a set of databases D is ε-differential privacy (ε-DP) if it
maps two databases D1 and D2 that differ for the data of one single individual
(denoted D1 ∼ D2) to output distributions that are indistinguishable up to some
value ε - usually referred to as the privacy budget. This is formalized by requir-
ing that for every D1 ∼ D2 and for every u: Pr[A(D1) = u] ≤ eε Pr[A(D2) = u].
The smaller the ε, the more privacy is guaranteed.

Algorithm 1
A bad use of Randomized Response

Input: ε ∈ R+, x1, x2 ∈ {true, false}
Precondtion: x1 �= x2
Postcondition: o1 = o2 ∧ εc ≤ ε

1: o← RRε(x)
2: return o

Fig. 1: Algorithm 1 is not ε-DP.

Randomized response with wrong noise.
A standard primitive to achieve differ-
ential privacy when the data is a sin-
gle boolean is randomized response [25].
We will use this (simplified) primitive
to give an idea of how CRSE works.
This primitive can be actually reduced
to the primitives that CRSE uses and
so it won’t be included in later sec-
tions. The primitive RRp(b) takes in in-
put p ∈ ( 12 , 1) and a boolean b and it
outputs b with probability p, and b̄ with

probability 1− p. By unfolding the definition of differential privacy it is easy to
see that this primitive is log[−p/(p−1)]-DP. This is internalized in CRSE thanks
to the the existence of an log[−p/(p−1)]-approximate lifting (Definition 2) of the
equality relation = between the distributions RRp(b) and RRp(b̄). When CRSE
executes line 1, it assumes that o1 = o2 and it sets a counter εc, representing
the privacy budget required by the primitive, to log[− ε

ε−1 ]. In order to check
whether this program is actually ε-DP it will then try to check whether this set
of conditions implies the postcondition Ψ ≡ o1 = o2 ∧ εc ≤ ε. This implication
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will fail. Indeed, there are value of ε, say ε = 0.7, which give a value of εc which
is actually greater than ε. This shows that the user may have confused the ε
parameter with the parameter p that the randomized response primitive takes

in input. If the user substituted line 1 with the following p← eε

1+eε ;o
$←−RRp(x),

then CRSE would have considered the following conditions instead: o1 = o2 and
εc = log[− p

p−1 ]∧p = eε

1+eε . These conditions would then imply the postcondition
Ψ proving the correcteness of the program.

The intuition behind this proof is that everytime CRSE executes a random

assignment of the form o
$←−RRp(x), it is allowed to assume that o1 = o2 as long as

it spends a certain amount of privacy budget, i.e. log[− p
p−1 ]. These assumptions

are recorded in a set of constraints which is then used to see if it implies the
condition that two output variables are equal and the budget spent does not
exceed ε. As a consequence of the definition of approximate lifting, this implies
differential privacy (Lemma 2). If this fails, CRSE will provide a counterexample
in the form of values for the inputs x1, x2, ε, p. Such counterexamples to the
postcondition do not necessarily denote a counterxampled to the privacy of the
algorithm (as we will see later the logic of couplings which CRSE is based on is
not complete w.r.t the differential privacy notion) but only potential candidates,
and hence need to be further checked.

Algorithm 2 A buggy Above
Threshold

Input:t, ε ∈ R, D ∈ D, q[i] : D → N
Output: o : [⊥i, z,⊥n−i−1]
Precondition:

D1 ∼ D2 ⇒ |q[i](D1)− q[i](D2)| ≤ 1
Postcondition: o1 = o2 ∧ εc ≤ ε

1: o← ⊥n; r ← n+ 1

2: t̂
$←−lap ε

2
(t)

3: for (i in 1:n) do

4: ŝ
$←−lap ε

4
(q[i](D))

5: if ŝ > t̂ ∧ r = n+ 1 then

6: o[i] ← ŝ; r ← i
7: return o

Algorithm 3 Another buggy Above
Threshold

Input:
t, ε ∈ R, D ∈ D, q[i] : D → N

Output: o ∈ {⊥,�}n
Precondition:

D1 ∼ D2 ⇒ |q[i](D1)− q[i](D2)| ≤ 1
Postcondition: o1 = o2 ∧ εc ≤ ε

1: t̂
$←−lap ε

2
(t)

2: for (i in 1:n) do
3: if q[i](D) ≥ t̂ then
4: o[i] ← �
5: else

6: o[i] ← ⊥
7: return o

Two buggy Sparse Vector implementations. The next two examples are variations
of the algorithm above threshold, a component of the sparse vector technique, a
classical technique which is still subject of studies for improvement [7,14]. Given
a numeric threshold, an array of numeric queries of length n, and a dataset, this
algorithm returns the index of the first query whose result exceeds the threshold
- and potentially it should also return the value of that query. This should be
done in a way that preserves differential privacy. To do this in the right way,
a program should add noise to the threshold, even if it is not sensitive data,
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add noise to each query, compare the values, and return the index of the first
query for which this comparison succeed. The noise that is usually added is
sampled from the Laplace distribution, one of the main primitive in differential
privacy. The analysis of this algorithm is rather complex: it uses the noise on
the threshold as a way to pay only once for all the queries that are below the
threshold, and the noise on the queries to pay for the first and only query that
is above the threshold, if any. Due to this complex analysis [16], this algorithm
has been a benchmark for tools for reasoning about differential privacy [2,3,26].

Algorithm 2 has a bug making the (whole) program not differentially private,
for values of n greater than 4. The program initializes an array of outputs o to all
bottom values, and a variable r to n+1 which will be used as guard in the main
loop. It then adds noise to the threshold, and iterates over all the queries adding
noise to their results. If one of the noised-results is above the noisy threshold
it saves the value in the array of outputs and updates the value of the guard
variable, causing it to exit the main loop. Otherwise it keeps iterating. The bug
is returning the value of the noisy query that is above the threshold and not only
its index, as done by the instruction in red in line 6 - this is indeed not enough
for guaranteeing differential privacy. For n < 5 this program can be shown
ε-differentially private by using the composition property of differential privacy
that says that the k-fold composition of ε-DP programs is kε-differentially private
(Section 3). However, for n ≥ 5 the more sophisticated analysis we described
above fails. The proof principle CRSE will use to try to show this program ε-
differentially private is to prove the assertion o1 = ι =⇒ o2 = ι ∧ εc ≤ ε, for
every ι ≤ n - the soundness of this principle has been proved in [3]. That is,
CRSE will try to prove the following assertions (which would prove the program
ε-differentially private):

• o1 = [ŝ1,⊥, . . . ,⊥] =⇒ o2 = [ŝ1,⊥, . . . ,⊥] ∧ εc ≤ ε
• o1 = [⊥, ŝ1, . . . ,⊥] =⇒ o2 = [⊥, ŝ1, . . . ,⊥] ∧ εc ≤ ε

. . .
• o1 = [⊥, . . . , ŝ1] =⇒ o2 = [⊥, . . . , ŝ1] ∧ εc ≤ ε

While proving the first assertion, CRSE will first couple at line 3 the threshold
as t̂1 + k0 = t̂2, for k0 > 1 where 1 is the sensitivity of the queries, which is
needed to guarantee that all the query results below the threshold in one run
stay below the threshold in the other run, then, it will increase appropriately
the privacy budget by k0

ε
2 . As a second step it will couple ŝ1+k1 = ŝ2 in line 4.

Now, the only way for the assertion o1 = [ŝ1,⊥,⊥] =⇒ o2 = [ŝ1,⊥,⊥] to hold,
is guaranteeing that both ŝ1 = ŝ2 and ŝ1 ≥ t1 =⇒ ŝ2 ≥ t2 hold. But these two
assertions are not consistent with each other because k0 ≥ 1. That is, the only
way, using these coupling rules, to guarantee that the run on the right follows
the same branches of the run on the left (this being necessary for proving the
postcondition) is to couple the samples ŝ1 and ŝ2 so that they are different, this
necessarily implying the negation of the postcondition. This would not be the
case if we were returning only the index of the query, since we can have that
both the queries are above the threshold but return different values. Indeed,

by substituting line 7 with o[i]
$←−� the program can be proven ε-differentially
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private. So the refuting principle CRSE will use here is the one that finds a trace
on the left run such that the only way the right run can be forced to follow it is
by making the output variables different.

A second example with bug of the above threshold algorithm is shown in
Figure 3. In this example, in the body of the loop, the test is performed between
the noisy threshold and the actual value of the query on the database - that is,
we don’t add noise to the query. CRSE will use for this example another refuting
principle based on reachability. In particular, it will vacuously couple the two
thresholds at line 1. That is it will not introduce any relation between t̂1, and t̂2.
CRSE will then search for a trace which is satisfiable in the first run but not in
the second one. This translates in an output event which has positive probability
on the first run but 0 probability in the second one leading to an unbounded
privacy loss, and making the algorithm not ε-differentially private for all finite ε.
Interestingly this unbounded privacy loss can be achieved with just 2 iterations.

3 Preliminaries

Let A be a denumerable set, a subdistribution over A is a function μ : A→ [0, 1]
with weight

∑
a∈A μ(a) less or equal than 1. We denote the set of subdistribu-

tions over A as sdistr(A). When a subdistribution has weight equal to 1, then we
call it a distribution. We denote the set of distributions over A by distr(A). The
null subdistribution μ0 : A → [0, 1] assigns to every element of A mass 0. The
Dirac’s distribution unit(a) : A → [0, 1], defined for a ∈ A as unit(a)(x) ≡ 1
if x = a, and unit(a)(x) ≡ 0, otherwise. The set of subprobability distributions
can be given the structure of a monad, with unit the function unit. We have

also a function bind ≡ λμ.λf.λa.
∑
b∈O′

μ(b) · f(b)(a) allowing us to compose sub-

distributions (as we compose monads). We will use the notion of ε-divergence
Δε(μ1, μ2) between two subdistributions μ1, μ2 ∈ sdistr(A) to define approxi-
mate coupling, this is defined as:Δε(μ1, μ2) ≡ supE⊆O

(
μ1(E)− exp(ε) · μ2(E)

)
.

Formally, differential privacy is a property of a probabilistic program:

Definition 1 (Differential Privacy [8]). Let ε ≥ 0 and ∼⊆ D×D. A program
A : D → distr(O) is ε-differentially private with respect to ∼ iif ∀D ∼ D′.∀u ∈
O:

Pr[A(D) = u] ≤ eε Pr[A(D′) = u]

The adjacency relation ∼ over the set of databases D models which pairs of
input databases should be indistinguishable to an adversary. In its most classical
definition, ∼ relates databases that differ in one record in terms of hamming
distance. Differentially private programs can be composed [8]: given programs A1

and A2, respectively ε1 and ε2 differentially private, their sequential composition
A(D) ≡ A2(〈A1(D), D〉) is ε1 + ε2-differentially private. We say that a function
f : D → Z is k sensitive if |f(x) − f(y)| ≤ k, for all x ∼ y. Functions with
bounded sensitivity can be made differentially private by adding Laplace noise:



Coupled Relational Symbolic Execution for Differential Privacy 213

Lemma 1 (Laplace Mechanism [8]). Let ε > 0, and assume that f : D �→
Z is a k sensitive function with respect to ∼⊆ D × D. Then the randomized
algorithm mapping d to f(D) + ν, where ν is sampled from a discrete version of
the Laplace distribution with scale 1

ε , is kε-differentially private w.r.t to ∼.

The notion of approximate probabilistic coupling is internalized by the notion
of approximate lifting [3].

Definition 2. Given μ1 ∈ distr(A), μ2 ∈ distr(B), a relation Ψ ⊆ A×B, and
ε ∈ R, we say that μ1, μ2 are related by the ε approximate lifting of Ψ , denoted
μ1(Ψ)

εμ2, iff there exists μL, μR ∈ distr(A×B) such that: 1) λa.
∑

b μL(a, b) =
μ1 and λb.

∑
a μR(a, b) = μ2, 2) {(a, b)|μL(a, b) > 0 ∨ μR(a, b) > 0} ⊆ Ψ , 3)

Δε(μL, μR) ≤ 0.

Approximate lifting satisfies the following fundamental property [3]:

Lemma 2. Let μ1, μ2 ∈ distr(A), ε ≥ 0. Then Δε(μ1, μ2) ≤ 0 iff μ1(=)εμ2.

From Lemma 2 we have that an algorithm A is ε-differentially private w.r.t to
∼ iff A(D1)(=)εA(D2) for all D1 ∼ D2. The next lemma [3], finally, casts the
Laplace mechanisms in terms of couplings:

Lemma 3. Let Lv1,b, Lv2,b two Laplace random variables with mean v1, and v2
respectively, and scale b. Then

Lv1,b {(z1, z2) | z1 + k = z2 ∈ Z× Z}|k+v1−v2|ε Lv2,b,

for all k ∈ Z, ε ≥ 0.

4 Concrete languages

In this section we sketch the two CRSE concrete languages, the unary one PFOR
and the relational one RPFOR. These will be the basis on which we will design
our symbolic languages in the next section.

4.1 PFOR

PFOR is a basic FOR-like language with arrays, to represent databases and other
data structures, and probabilistic sampling from the Laplace distribution. The
full syntax is pretty standard and we fully present it in the extended version [11].
In the following we have a simplified syntax:

C & c ::= skip | c;c | x←e | x $←−lape(e) | if e then c else c | . . .

The set of commands C includes assignments, the skip command, sequencing,
branching, and (not showed) array assignments and looping construct. Finally,

we also include a primitive instruction x
$←−lape2(e1) to model random sampling

from the Laplace distribution. Arithmetic expressions e ∈ E are built out of inte-
gers, array accesses and lengths, and elements in Xp. The set Xp contains values
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denoting random expressions, that is values coming from a random assignment
or arithmetic expressions involving such values. We will use capital letters such
as X,Y, . . . to range over Xp. The set of values is V ≡ Z ∪ Xp. In Figure 2, we
introduce a grammar of constraints for random expressions, where X ranges over
Xp and n, n1, n2 ∈ Z. The simple constraints in the syntactic categories ra and
re record that a random value is either associated with a specific distribution, or
that the computation is conditioned on some random expression being greater
than 0 or less than or equal than 0. The former constraints, as we will see, come
from branching instructions. We treat constraint lists p, p′, in Figure 2 as lists of
simple constraints and hence, from now on, we will use the infix operators :: and
@, respectively, for appending a simple constraint to a constraint and for con-
catenating two constraints. The symbol [] denotes the empty list of probabilistic
constraints. Environments in the set M, or probabilistic memories, map pro-
gram variables to values in V, and array names to elements in Array ≡

⋃
i Vi,

so the type of a memory m ∈ M is V → V ∪ A → Array. We will distinguish
between probabilistic concrete memories inM and concrete memories in the set
Mc ≡ V→ Z∪A→

⋃
i Zi. Probabilistic concrete memories are meant to denote

subdistributions over the set of concrete memories Mc.

ra ::= X
$←−lapn2(n1)

re ::= n | X | re⊕ re

P & p ::= X = re | re > 0 |
re ≤ 0 | ra | p :: P | []

Fig. 2: Probabilistic constraints

Expressions in PFOR are given
meaning through a big-step evalua-
tion semantics specified by a judg-
ment of the form: 〈m, e, p〉 ↓c 〈v, p′〉,
where m ∈ M, e ∈ E , p, p′ ∈ P, v ∈ V .
The judgments reads as: expression
e reduces to the value v and proba-
bilistic constraints p′ in an environ-
ment m with probabilistic concrete

constraints p. We omit the rules for this judgment here, but we will present sim-
ilar rules for the symbolic languages in the next section. Commands are given

if-false
〈m, e, p〉 ↓c 〈v, p′〉 v ∈ Z v ≤ 0

〈m, if e then c1 else c2, p〉 →c 〈m, c2, p′〉

if-true-prob
〈m, e, p〉 ↓c 〈v, p′〉 v ∈ Xp p′′ ≡ p′@v > 0

〈m, if e then c1 else c2, p〉 →c 〈m, c1, p′′〉

lap-ass

〈m, e1, p〉 ↓c 〈n1, p1〉 〈m, e2, p1〉 ↓c 〈n2, p2〉 n2 > 0
X fresh(Xp) p′ ≡ p1@X = lapn2(n1)

〈m,x $←−lape2(e1), p〉 →c 〈m[x �→ X], skip, p′〉

Fig. 3: PFOR selected rules

meaning through a small-step evaluation semantics specified by a judgment of
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the form: 〈m, c, p〉 →c 〈m′, c′, p′〉, where m,m′ ∈ M, c, c′ ∈ C, p, p′ ∈ P . The
judgment reads as: the probabilistic concrete configuration 〈m, c, p〉 steps in to
the probabilistic concrete configuration 〈m′, c′, p′〉. Figure (3) shows a selection
of the rules defining this judgment. Most of the rules are self-explanatory so we
only describe the ones which are non standard. Rule lap-ass handles the ran-
dom assignment. It evaluates the mean e1 and the scale e2 of the distribution
and checks that e2 actually denotes a positive number. The semantic predicate
fresh asserts that the first argument is drawn nondeterministically from the
second argument and that it was never used before in the computation. Notice
that if one of these two expressions reduces to a probabilistic symbolic value the
computation halts. Rule if-true-prob (and if-false-prob) reduces the guard of
a branching instruction to a value. If the value is a probabilistic symbolic con-
straint then it will nondeterministically choose one of the two branches recording
the choice made in the list of probabilistic constraints. If instead the value of the
guard is a numerical constant it will choose the right branch deterministically
using the rules if-false and if-true (not showed).

We call a probabilistic concrete configuration of the form 〈m, skip, p〉 final.
A set of concrete configurations D is called final and we denote it by Final(D)
if all its concrete configurations are final. We will use this predicate even for sets
of sets of concrete configurations with the obvious lifted meaning. As clear from
the rules a run of a PFOR program can generate many different final concrete
configurations. A different judgment of the form D ⇒c D′, where D, D′ ∈ P(M×
C × P ), and in particular its transitive and reflexive closure ( ⇒∗

c), will help us
in collecting all the possible final configurations stemming from a computation.
We have only one rule that defines this judgment:

Sub-distr-step

〈m, c, p〉 ∈ D D′ ≡ (D \ {〈m, c, p〉}) ∪ {〈m′, c′, p′〉 | 〈m, c, p〉 →c 〈m′, c′, p′〉}
D ⇒c D′

Rule Sub-distr-step nondeterministically selects a configuration s = 〈m, c, p〉
from D, removes s from it, and adds to D′ all the configurations s′ that are
reachable from s.

In section 3 we defined the notions of lifting, coupling and differential privacy
using subdistributions in the form of functions from a set of atomic events to
the interval [0, 1]. The semantics of the languages proposed so far though only
deal with subdistributions represented as set of concrete probabilistic config-
urations. We now show how to map the latter to the former. In Figure 4 we
define a translation function (�·; ·�mp) and, auxiliary functions as well, between
a single probabilistic concrete configuration and a subdistribution defined using
the unit(·)/bind(·, ·) constructs. We make use of the constant subdistribution
μ0 which maps every element to mass 0, and is usually referred to as the null
subdistribution, also by lapn2(n1)(z) we denote the mass of (discrete version of)
the Laplace distribution centered in n1 with scale n2 at the point z.

The idea of the translation is that we can transform a probabilistic concrete
memory ms ∈ M into a distribution over fully concrete memories in Mc by
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�ms; p�mp = bind(�p�p, (λso.unit(so(ms))))
�[]�p = unit([])
�X = re :: p′�p= bind(�p′�p, λso.bind(�re�reso , λzo.unit(X = zo :: so)))
�re > 0 :: p′�p = bind(�p′�p, λso.bind(�re�reso , λzo.if (zo > 0) then unit(zo) else μ0))
�re ≤ 0 :: p′�p = bind(�p′�p, λso.bind(�re�reso , λzo.if (zo ≤ 0) then unit(zo) else μ0))
�lapn2(n1)�res = λz.lapn2(n1)(z)
�n�res = unit(n)
�X�res = unit(s(X))
�re1 ⊕ re2�res = bind(�re1�res , λv1.bind(�re2�res , λv2.unit(v1 ⊕ v2)))

Fig. 4: Translation from configurations to subdistributions.

sampling from the distributions of the probabilistic variables defined in ms in the
order they were declared which is specified by the probabilistic path constraints.
To do this we first build a substitution for the probabilistic variable which maps
them into integers and then we perform the substitution on ms. Given a set of
probabilistic concrete memories we can then turn them in a subdistribution by
summing up all the translations of the single probabilistic configurations. Indeed,
given two subdistributions μ1, μ2 defined over the same set we can always define
the subdistribution μ1 + μ2 by the mapping (μ1 + μ2)(a) = μ1(a) + μ2(a).

The following Lemma states an equivalence between these two representa-
tions of probability subdistributions. The hypothesis of the theorem involve a
well-formedness judgment, m � p, which has not been specified for lack of space
but can be found in the extended version [11], it deals with well-formedness
of the probabilistic path constraint p with respect to the concrete probabilistic
memory m.

Lemma 4. If m � p and {〈m, c, p〉} ⇒∗
c {〈m1, skip, p1〉, . . . , 〈mn, skip, pn〉}

then bind(�m; p�mp, �c�C) =
n∑
i=1

�mi; pi�mp

This lemma justifies the following definition for the semantics of a program.

Definition 3. The semantics of a program c executed on memory m and prob-

ability path constraint p0 is �c�C(m0, p0) ≡
∑

(m,skip,p)∈D

�m; p�mp,

when {〈m, c, p〉} ⇒∗
c D, Final(D), and m0 � p0. If p0 = [] we write �c�C(m0).

4.2 RPFOR

In order to be able to reason about differential privacy we will build on top of
PFOR a relational language called RPFOR with a relational semantics dealing
with pair of traces. Intuitively, an execution of a single RPFOR program repre-
sents the execution of two PFOR programs. Inspired by the approach of [19], we
extend the grammar of PFOR with a pair constructor 〈·|·〉 which can be used
at the level of values 〈v1|v2〉, expressions 〈e1|e2〉, or commands 〈c1|c2〉, where
ci, ei, vi for i ∈ {1, 2} are commands, expressions, and values in PFOR. This
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entails that pairs cannot be nested. This syntactic invariant is preserved by the
rules handling the branching instruction. Pair constructs are used to indicate
where commands, values, or expressions might be different in the two unary ex-
ecutions represented by a single RPFOR execution. The set of expressions and
commands in RPFOR, Er, Cr are generated by the grammars:

Er & er ::= v | e | 〈e1|e2〉 Cr & cr ::= x←er | x $←−laper (er) | c | 〈c1|c2〉

where v ∈ Vr, e, e1, e2 ∈ E , c, c1, c2 ∈ C. Values can now be also pairs of unary
values, that is Vr ≡ V ∪ V2.

To define the semantics for RPFOR, we first extend memories to allow pro-
gram variables to map to pairs of integers, and array variables to map to pairs
of arrays. In the following we will use the following projection functions '·(i for
i ∈ {1, 2}, which project, respectively, the first (left) and second (right) elements
of a pair construct (i.e., '〈c1|c2〉(i = ci, '〈e1|e2〉(i = ei with 'v(i = v when
v ∈ V), and are homomorphic for other constructs.

The semantics of expressions in RPFOR is specified through the following
judgment 〈m1,m2, e, p1, p2〉 ↓rc 〈v, p′1, p′2〉, where m1,m2 ∈ M, p1, p2, p

′
1, p

′
2 ∈

P, e ∈ Er, v ∈ Vr. Similarly, for commands, we have the following judgment
〈m1,m2, c, p1, p2〉 →rc 〈m′1,m′2, c′, p′1, p′2〉. Again, we use the predicate Final(·)
for configurations 〈m1,m2, c, p1, p2〉 such that c = skip, and lift the predicate
to sets of configurations as well. Intuitively a relational probabilistic concrete
configuration 〈m1,m2, c, p1, p2〉 denotes a pair of probabilistic concrete states,
that is a pair of subdistributions over the space of concrete memories. In Figure
5 a selection of the rules defining the judgments is presented. Most of the rules
are quite natural. Notice how branching instructions combine both probabilistic
and relational nondeterminism.

r-if-conc-conc-true-false
〈m1,m2, e, p1, p2〉 ↓rc 〈v, p′1, p′2〉 �v 1, �v 2 ∈ Z �v 1 > 0 �v 2 ≤ 0

〈m1,m2, if e then c1 else c2, p1, p2〉 →rc 〈m1,m2, 〈�c1 1|�c2 2〉, p′1, p′2〉

r-if-prob-prob-true-false

〈m1,m2, e, p1, p2〉 ↓rc 〈v, p′1, p′2〉 �v 1, �v 2 ∈ Xp

〈m1,m2, if e then c1 else c2, p1, p2〉 →rc

〈m1,m2, 〈�c1 1|�c2 2〉, �v 1 > 0@p′1, �v 2 ≤ 0@p′2〉

r-pair-step

{i, j} = {1, 2} 〈�m i, ci, pi〉 →c 〈m′
i, c

′
i, p

′
i〉

c′j = cj p′j = pj m′
j = �m j

〈m1,m2, 〈c1|c2〉, p1, p2〉 →rc 〈m′
1,m

′
2, 〈c′1|c′2〉, p′1, p′2〉

Fig. 5: RPFOR selected rules
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So, as in the case of PFOR, we collect sets of relational configurations using
the judgment R ⇒rc R′ with R, R′ ∈ P(M×M× Cr × P × P ), defined by
only one rule:

SUB-PDISTR-STEP
〈m1,m2, c, p1, p2〉 ∈ R

Rt ≡ {〈m′1,m′2, c′, p′1, p′2〉 | 〈m1,m2, c, p1, p2〉 →rc 〈m′1,m′2, c′, p′1, p′2〉}

R′ ≡
(

R \ {〈m1,m2, c, p1, p2〉}
)
∪ Rt

R ⇒rc R′

This rule picks and remove non deterministically one relational configuration
from a set and adds to it all those configurations that are reachable from
it. As mentioned before a run of a program in RPFOR corresponds to the
execution of two runs the program in PFOR. Before making this precise we
extend projection functions to relational configurations in the following way:
'〈m1,m2, c, p1, p2〉(i = 〈mi, c, pi〉, for i ∈ {1, 2}. Projection functions extend in
the obvious way also to sets of relational configurations. We are now ready to
state the following lemma relating the execution in RPFOR to the one in PFOR:

Lemma 5. Let i ∈ {1, 2} then R ⇒∗
rc R′ iff 'R(i ⇒∗

c 'R′(i.

5 Symbolic languages

In this section we lift the concrete languages, presented in the previous section,
to their symbolic versions (respectively, SPFOR and SRPFOR) by extending them
with symbolic values X ∈ X . We use intentionally the same metavariables for
symbolic values in X and Xp since they both represent symbolic values of some
sort. However, we assume Xp ∩X = ∅ - this is because we want symbolic values
in X to denote only unknown sets of integers, rather than sets of probability
distributions. So, the meaning of X should then be clear from the context.

5.1 SPFOR

SPFOR expressions extend PFOR expressions with symbolic values X ∈ X Com-
mands in SPFOR are the same as in PFOR but now symbolic values can appear
in expressions.

In order to collect constraints on symbolic values we extend configurations
with set of constraints over integer values, drawn from the set S (Figure 6a),
not to be confused with probabilistic path constraints (Figure 6b). The former
express constraints over integer values, for instance parameters of the distribu-
tions. In particular constraint expressions include standard arithmetic expres-
sions with values being symbolic or integer constants, and array selection. Prob-
abilistic path constraints now can also contain symbolic integer values. Hence,
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Se ! e ::= n | X | i | e⊕ e | |e|
store(e, e, e) | select(e, e)

S ! s ::= � | e ◦ e | s ∧ s | ¬s | ∀i.s

(a) Symbolic constraints. X ∈ X , n ∈ V.

sra ::= Y
$←−lapce(ce)

sre ::= n | X | Y | re⊕ re
SP ::= Y = re | re > 0 | re ≤ 0 | ra

(b) Prob. constraints. ce ∈ S, X ∈
X , Y ∈ Xp

Fig. 6: Grammar of constraints

probabilistic path constraints now can be symbolic. This is needed to address ex-
amples branching on probabilistic values, such as the Above Threshold algorithm
we discussed in Section 2.

Memories can now contain symbolic values and we represent arrays in mem-
ory as pairs (X, v), where v is a (concrete or symbolic) integer value representing
the length of the array, and X is a symbolic value representing the array content.
The content of the arrays is kept and refined in the set of constraints by means of
the select(·, ·) and store(·, ·, ·) operations. The semantics of expressions is cap-
tured by the judgment (m, e, p, s) ↓SP (v, p′, s′) including now a set of constraints
over integers. The rules of the judgment are fully described in the extended ver-
sion [11]. We briefly describe a selection of the rules. Rule S-P-Op-2 applies
when an arithmetic operation has both of its operands that reduce respectively
to elements in Xp. Appropriately it updates the set of probabilistic constraints.
Rules S-P-Op-5 instead fires when one of them is an integer and the other is
a symbolic value. In this case only the list of symbolic constraints needs to be
updated. Finally, in rule S-P-Op-6 one of the operands reduces to an element
in Xp and the other to an element in X . We only update the list of probabilistic
constraints appropriately, as integer constraints cannot contain symbols in Xp.

The semantics of commands of SPFOR is described by small step seman-
tics judgments of the form: (m, c, p, s) →SP (m′, c′, p′, s′), including a set of
constraints over integers. We provide a selection of the rules in Figure 7. Rule
S-P-If-sym-true fires when a branching instruction is to be executed and the
guard is reduced to either an integer or a value in X , denoted by the set Vis.
In this case we can proceed with the true branch recording in the set of integer
constraints the fact that the guard is greater than 0. Rule S-P-If-prob-false
handles a branching instruction which has a guard reducing to a value in Xp. In
this case we can proceed in both branches, even though here we only show one
of the two rules, by recording the conditioning fact on the list of probabilistic
constraints. Finally, rule S-P-Lap-Ass handles probabilistic assignment. After
having reduced both the expression for the mean and the expression for the scale
to values we check that those are both either integers or symbolic integers, if
that’s the case we make sure that the scale is greater than 0 and we add a prob-
abilistic constraints recording the fact that the modified variable now points to
a probabilistic symbolic value related to a Laplace distribution.

The semantics of SPFOR has two sources of nondeterminism, from guards
which reduce to symbolic values, and from guards which reduce to a probabilistic
symbolic value. The collecting semantics of SPFOR, specified by judgments as
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S-P-If-sym-true

(m, e, p, s) ↓SP (v, p′, s′) v ∈ Vis

(m, if e then ctt else cff , p, s) →SP

(m, ctt , p
′, s′ ∪ {v > 0})

S-P-If-prob-false

(m, e, p, s) ↓SP (v, p′, s′) v ∈ Xp

(m, if e then ctt else cff , p, s) →SP

(m, cff , p
′@[v ≤ 0], s′)

S-P-Lap-Ass

(m, ea, p, s) ↓SP (va, p
′, s′) (m, eb, p

′, s′) ↓SP (vb, p
′′, s′′) X fresh(Xp)

va, vb ∈ Vis s′′′ = s′′ ∪ {vb > 0} p′′′ = p′′@[X
$←−lapvb(va)]

(m,x
$←−lapeb(ea), p, s) →SP (m[x �→ X], skip, p′′′, s′′′)

Fig. 7: SPFOR: Semantics of commands (selected rules)

H ⇒sp H′ (for sets of configurations H and H′) takes care of both of them.
The rule for this judgment form is:

s-p-collect

D[s] ⊆ H H′ ≡ {(m′, c′, p′, s′) | ∃(m, c, p, s) ∈ D[s] s.t.
(m, c, p, s)→SP (m′, c′, p′, s′) ∧ SAT(s′)}

H ⇒sp

(
H \ D[s]

)
∪H′

Unlike in the deterministic case of the rule Set-Step, where only one configura-
tion was chosen nondeterministically from the initial set, here we select nonde-
terministically a (maximal) set of configurations all sharing the same symbolic
constraints. The notation D[s] ⊆ H means that D is the maximal subset of con-

figuration in H which have s as set of constraints. We use H
D[s]
===⇒

sp
H′ when

we want to make explicit the set of symbolic configurations, D[s], that we are us-
ing to make the step. Intuitively, s-p-collect starts from a set of configurations
and reaches all of those that are reachable from it - all the configurations that
have a satisfiable set of constraints and are reachable from one of the original
configurations with only one step of the symbolic semantics. Notice that in a set
of constraints we can have constraints involving probabilistic symbols, e.g. if the
i-th element of an array is associated with a random expression. Nevertheless,
the predicate SAT(·) does not need to take into consideration relations involving
probabilistic symbolic constraints but only relations involving symbolic values
denoting integers. The following lemma of coverage connects PFOR with SPFOR
ensuring that a concrete execution is covered by a symbolic one.

Lemma 6 (Probabilistic Unary Coverage). If H
D[s]
===⇒

sp
H′ and σ |=I D[s]

then ∃σ′, D[s′] ⊆ H′ such that σ′ |=I D[s′], and σ(D[s])⇒∗
p σ′(D[s′]).

5.2 SRPFOR

The language presented in this section is the the symbolic extension of the con-
crete language RPFOR. It can also be seen as the relational extension of SPFOR.



Coupled Relational Symbolic Execution for Differential Privacy 221

The key part of this language’s semantics will be the handling of the probabilis-
tic assignment. For that construct we will provide 2 rules instead of one. The
first one is the obvious one which carries on a standard symbolic probabilistic
assignment. The second one will implement a coupling semantics. The syntax
of the SRPFOR, presented in Figure 8, extends the syntax of RPFOR by adding
symbolic values. The main change is in the grammar of expressions, while the
syntax for commands is almost identical to that of RPFOR.

Ers ! esr ::= es | 〈es|es〉 | esr ⊕ esr | a[esr]
Crs ! csr ::= cs | 〈cs|cs〉 | csr;csr | x←esr | a[esr]←esr | x $←−lapes(esr) |

if esr then csr else csr | for (x in esr:esr) do csr od

Fig. 8: SRPFOR syntax. es ∈ Es, cs ∈ Cs.

As in the case of RPFOR, only unary symbolic expressions and commands are
admitted in the pairing construct. This invariant is maintained by the seman-
tics rules. As for the other languages, we provide a big-step evaluation seman-
tics for expressions whose judgments are of the form (m1,m2, e, p1, p2, s) ↓SRP

(v, p′1, p
′
2, s

′). The only rule defining the judgment ↓SRP is S-R-P-Lift and it is
presented in the extended version [11]. The rule projects the symbolic relational
expression first on the left and evaluates it to a unary symbolic value, potentially
updating the probabilistic symbolic constraints and the symbolic constraints. It
then does the same projecting the expression on the right but starting from the
potentially previously updated constraints. Now, the only case when the value
returned is unary is when both the previous evaluation returned equal integers,
in all the other cases a pair of values is returned. So, the relational symbolic
semantics leverages the unary semantics. For the semantics of commands we use
the following evaluation contexts to simplify the exposition:

CT X ::= [ · ] | CT X ;c
P ::= 〈·;c|·〉 | 〈·| · ;c〉 | 〈·|·〉 | 〈·;c| · ;c〉

Notice how P gets saturated by pairs of commands. Moreover, we separate com-
mands in two classes. We call synchronizing all the commands in Crs with the

following shapes x
$←−lape2(e1), 〈x

$←−lape2(e1)|x′
$←−lape′2(e

′
1)〉, since they allow syn-

chronization of two runs using coupling rules. We call non synchronizing all the
other commands.

Semantics of non synchronizing commands We consider judgments of the
form (m1,m2, c, p1, p2, s)→SRP (m′1,m

′
2, c

′, p′1, p
′
2, s

′) and a selection of the rules
is given in Figure 9. An explanation of the rules follows. Rule s-r-if-prob-prob-
true-false fires when evaluating a branching instruction. In particular, it fires
when the guard evaluates on both side to a probabilistic symbolic value. In
this case the semantics can continue with the true branch on the left run and
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s-r-if-prob-prob-true-false

(m1,m2, e, p1, p2, s) ↓SRP (v, p′1, p
′
2, s

′) �v 1, �v 2 ∈ Xp

p′′1 ≡ p′1@[�v 1 > 0] p′′2 ≡ p′2@[�v 2 ≤ 0]

(m1,m2, if e then ctt else cff , p1, p2, s) →SRP (m1,m2, 〈�ctt 1|�cff  2〉, p′′1 , p′′2 , s′)

s-r-if-prob-sym-true-false

(m1,m2, e, p1, p2, s) ↓SRP (v, p′1, p
′
2, s

′)
�v 1 ∈ Xp �v 2 ∈ X p′′1 ≡ p′1@[�v 1 > 0] s′′′ ≡ s′′ ∪ {�v 2 ≤ 0}
(m1,m2, if e then ctt else cff , p1, p2, s) →SRP (m1,m2, ctt , p

′′
1 , p

′
2, s

′′′)

s-r-pair-lap-skip

(m1, x
$←−lapeb(ea), p1, s) →SP (m′

1, skip, p
′
1, s

′)

(m1,m2, 〈x $←−lapeb(ea)|skip〉, p1, p2, s) →SRP (m′
1,m2, 〈skip|skip〉, p′1, p2, s′)

s-r-pair-lapleft-sync

c �≡ x
$←−lape′

b
(e′a) P ≡ 〈·|·〉 (m2, c, p2, s) →SP (m′

2, c
′, p′2, s

′)

(m1,m2,P(x
$←−lapeb(ea), c), p1, p2, s) →SRP (m1,m

′
2, 〈x

$←−lapeb(ea)|c
′〉, p1, p′2, s′)

s-r-pair-ctxt-1

x
$←−lapeb(ea) /∈ {c1, c2} |{c1, c2}| = 2 {1, 2} = {i, j}

c′i ≡ ci p′i ≡ pi
m′

i ≡ mi (mj , cj , pj , s) →SP (m′
j , c

′
j , p

′
j , s

′)

(m1,m2,P(c1, c2), p1, p2, s) →SRP (m′
1,m

′
2,P(c′1, c

′
2), p

′
1, p

′
2, s

′)

s-r-pair-ctxt-2

P �≡ 〈·|·〉 (m1,m2, 〈c1|c2〉, p1, p2, s) →SRP (m′
1,m

′
2, 〈c′1|c′2〉, p′1, p′2, s′)

(m1,m2,P(c1, c2), p1, p2, s) →SRP (m′
1,m

′
2,P(c′1, c

′
2), p

′
1, p

′
2, s

′)

Fig. 9: SRPFOR: Semantics of non synchronizing commands. Selected rules.

with the false branch on the right one. Notice that commands are projected
to avoid pairing commands appearing in a nested form. Rule s-r-if-prob-sym-
true-false applies when the guard of a branching instruction evaluates to a
probabilistic symbolic value on the left run and a symbolic integer value on the
right one. The rule allows to continue on the true branch on the left run and on
the false branch on the right one. Notice that in one case the probabilistic list
of constraints is updated, while on the other the symbolic set of constraints.

Rule s-r-pair-lap-skip handles the pairing command where on the left hand
side we have a probabilistic assignment and on the right a skip instruction.
In this case, there is no hope for synchronization between the two runs and
hence we can just perform the left probabilistic assignment relying on the unary
symbolic semantics. Rule s-r-pair-lapleft-sync instead applies when on the left
we have a probabilistic assignment and on the right we have another arbitrary
command. In this case we can hope to reach a situation where on the right run
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another probabilistic assignment appears. Hence, it makes sense to continue the
computation in a unary way on the right side. Again →SRP is a nondeterministic
semantics. The nondeterminism comes from the use of probabilistic symbols and
symbolic values as guards, and by the relational approach. So, in order to collect
all the possible traces stemming from such nondeterminism we define a collecting
semantics relating set of configurations to set of configurations.

The semantics is specified through a judgment of the form: SR ⇒srp SR′,
with SR,SR′ ∈ P(MSP ×MSP × Crs × SP × SP ×S). The only rule defining
the judgment is the following natural lifting of the one for the unary semantics.

s-r-p-collect

R[s] ⊆ SR SR′ ≡ {(m′1,m′2, c′, p′1, p′2, s′) |
∃(m1,m2, c, p1, p2, s) ∈ R[s] s.t. (m1,m2, c, p1, p2, s)→SRP (m′1,m

′
2, c

′, p′1, p
′
2, s

′)
∧SAT(s′)}

SR ⇒srp

(
SR \ R[s]

)
∪SR′

The rule, and the auxiliary notation R[s], is pretty similar to that of SPFOR, the
only difference is that here sets of symbolic relational probabilistic configurations
are considered instead of symbolic (unary) probabilistic configurations.

Semantics of synchronizing commands We define a new judgment with
form G 
 G′, with G, G′ ∈ P(P(MSP×MSP×Crs×SP ×SP ×S)). In Figure
10, we give a selection of the rules. Rule Proof-Step-No-Sync applies when no
synchronizing commands are involved, and hence there is no possible coupling
rule to be applied. In the other rules, we use the variable εc to symbolically
count the privacy budget in the current relational execution. The variable gets
increased when the rule Proof-Step-Lap-Gen fires. This symbolic counter vari-
able is useful when trying to prove equality of certain variables without spending
more than a specific budget. This rule is the one we can use in most cases when
we need to reason about couplings on the Laplace distributions. In the set of sets
of configurations G, a set of configurations, SR, is nondeterministically chosen.
Among elements in SR a configuration is also nondeterministically chosen. Us-
ing contexts we check that in the selected configuration the next command to
execute is the probabilistic assignment. After reducing to values both the mean
and scale expression, and verified (that is, assumed in the set of constraints) that
in the two runs the scales have the same value, the rule adds to the set of con-
straints a new element, that is, E′′ = E′ + |'va(1 − 'va(2| ·K ′, where K,K ′, E′′

are fresh symbols denoting integers and E′ is the symbolic integer to which the
budget variable εc maps to. Notice that εc needs to point to the same symbol
in both memories. This is because it is a shared variable tracking the privacy
budget spent so far in both runs. This new constraint increases the budget spent.
The other constraint added is the real coupling relation, that is X1 +K = X2.
Where X1, X2 are fresh in X . Later, K will be existentially quantified in order
to search for a proof of ε-indistinguishability.

Rule Proof-Step-Avoc does not use any coupling rule but treats the sam-
ples in a purely symbolic manner. It intuitively asserts that the two samples are
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Proof-Step-No-Sync

SR ∈ G SR ⇒srp SR′ G′ ≡
(
G \ {SR}

)
∪ {SR′}

G 
 G′

Proof-Step-No-Coup

(m1,m2, CT X [x
$←−lapeb(ea)], p1, p2, s) ∈ SR ∈ G

(m1,m2, ea, p1, p2, s) ↓SRP (va, p
′
1, p

′
2, sa)

(m1,m2, eb, p
′
1, p

′
2, sa) ↓SRP (vb, p

′′
1 , p

′′
2 , sb)

X1, X2 fresh(Xp) m′
1 ≡ m1[x �→ X1] m′

2 ≡ m2[x �→ X2]

p′′′1 ≡ p′′1@[X1
$←−lap�vb�1(�va 1)] p′′′2 ≡ p′′2@[X2

$←−lap�vb�2(�va 2)]

SR′ ≡
(

SR \ {(m1,m2, CT X [x
$←−lapeb(ea)], p1, p2, s)}

)
∪

{(m′
1,m

′
2, CT X [skip], p′′′1 , p

′′′
2 , s

′′)} G′ ≡
(

G \ {SR}
)

∪ {SR′}

G 
 G′

Proof-Step-Avoc

(m1,m2, CT X [x
$←−lapeb(ea)], p1, p2, s) ∈ SR ∈ G

(m1,m2, ea, p1, p2, s) ↓SRP (va, p
′
1, p

′
2, sa)

(m1,m2, eb, p
′
1, p

′
2, sa) ↓SRP (vb, p

′′
1 , p

′′
2 , sb)

X1, X2 fresh(X ) m′
1 ≡ m1[x �→ X1] m′

2 ≡ m2[x �→ X2]
G′ ≡

(
G \ {SR}

)
∪ {SR′}

SR′ ≡
(
SR \ {(m1,m2, CT X [x

$←−lapeb(ea)], p1, p2, s)}
)

∪{(m′
1,m

′
2, CT X [skip], p′′1 , p

′′
2 , s

′′)}
G 
 G′

Proof-Step-Lap-Gen

(m1,m2, CT X [x
$←−lapeb(ea)], p1, p2, s) ∈ SR ∈ G

(m1,m2, ea, p1, p2, s) ↓SRP (va, p
′
1, p

′
2, sa)

(m1,m2, eb, p
′
1, p

′
2, sa) ↓SRP (vb, p

′′
1 , p

′′
2 , sb)

s′ ≡ sb ∪ {�vb 1 = �vb 2, �vb 1 > 0} m1(εc) = E′ = m′
2(εc)

E′′, X1, X2,K,K
′ fresh(X ) m′

1 ≡ m1[x �→ X1][εc �→ E′′]
m′

2 = m2[x �→ X2][εc �→ E′′] m(ε) = E
s′′ ≡ s′ ∪ {X1 +K = X2,K ≤ K′,K′ · E = �vb 1,

E′′ = E′ + |�va 1 − �va 2| ·K′}
p′′′1 ≡ p′′1@[X1

$←−lap�vb�1(�va 1)] p′′′2 ≡ p′′2@[X2
$←−lap�vb�2(�va 2)]

G′ ≡
(
G \ {SR}

)
∪ {SR′}

SR′ ≡
(
SR \ {(m1,m2, CT X [x

$←−lapeb(ea)], p1, p2, s)}
)

∪{(m′
1,m

′
2, CT X [skip], p′′′1 , p

′′′
2 , s

′′)}
G 
 G′

Fig. 10: SRPFOR: Proof collecting semantics, selected rules
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drawn from the distributions and assigns to them arbitrary integers free to vary
on the all domain of the Laplace distribution.

Finally, rule Proof-Step-No-Coup applies to synchronizing commands as
well. It does not add any relational constraints to the samples. This rules intu-
itively means that we are not correlating in any way the two samples. Notice
that since we are not using any coupling rule we don’t need to check that the
scale value is the same in the two runs as it is requested in the previous rule. We
could think of this as a way to encode the relational semantics of the program
in an expression which later can be fed in input to other tools.

The main difference with the previous rule is that here we treat the sampling
instruction symbolically and that is why the fresh symbols are in Xp, denoting
subdistributions, rather than in X , denoting sampled integers. When the pro-
gram involves a synchronizing command we basically fork the execution when
it is time to execute it. The set of configurations allow us to explore different
paths, one for every rule applicable.

6 Metatheory

The coverage lemma can be extended also to the relational setting.

Lemma 7 (Probabilistic Relational Coverage). If SR
R[s]
===⇒

srp
SR′ and

σ |=I R[s] then ∃σ′, R[s′] ∈ SR′ such that R[s′] ⊆ SR′, σ′ |=I R[s′], and
σ(R[s])⇒∗

rp σ′(R[s′]).

This can also be extended to 
 if we consider only the fragment that only uses
the rules Proof-Step-No-Sync, and Proof-Step-No-Coupl.

The language of relational assertions Φ, Ψ . . . is defined using first order pred-
icate logic formulas involving relational program expressions and logical variables
in LogVar. The interpretation of a relational assertions is naturally defined as a
subset ofMc×Mc, the set of pairs of memories modeling the assertion. We will
denote by �·�· the substitution function mapping the variables in an assertion to
the values they have in a memory (unary or relational). More details are in [10].

Definition 4. Let Φ, Ψ be relational assertions, c ∈ Cr, I : LogVar → R be an
interpretation defined on ε. We say that, Φ yields Ψ through c within ε under I
(and we write I � c : Φ

ε−→ Ψ) iff

1. {{{〈mI1 ,mI2 , c, [], [], �Φ�mI
〉}}}
∗ G

2. ∃Hsr = {Hs1, . . . ,Hst} ∈ G such that Final(Hsr) and

∀〈m1,m2, skip, p1, p2, s〉 ∈
⋃

D∈Hsr
D. ∃�k. s =⇒ �Ψ ∧ εc ≤ ε�〈m1|m2〉 where

mI ≡ 〈mI1 |mI2〉 = 〈m′I1 [εc �→ 0]|m′I2 [εc �→ 0]〉, m′I1 , and m′I2 are fully

symbolic memories, and �k = k1, k2, . . . are the symbols generated by the
rules for synchronizing commands.

The idea of this definition is to make the proof search automated. When proving
differential privacy we will usually consider Ψ as being equality of the output
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variables in the two runs and Φ as being our preconditions. We can now prove
the soundness of our approach.

Lemma 8 (Soundness). Let c ∈ Cr. If I � c : D1 ∼ D2
ε−→ o1 = o2 then c is

ε-differentially private.

We can also prove the soundness of refutations obtained by the semantics.

Lemma 9 (Soundness for refutation). Suppose that we have a reduction
{{{〈m1,m2, c, [], [], �Φ�〈m1|m2〉〉}}}
G, and Hs ∈ H ∈ G and, ∃σ |=Z s such
that Δε(�'c(1�C(σ(m1)), �'c(2�C(σ(m2))) > 0 then c is not differentially private.

7 Strategies for counterexample finding

Lemma 9 is hard to use to find counterexamples in practice. For this reasons we
will now describe three strategies that can help in reducing the effort in coun-
terexample finding. These strategies help in isolating traces that could poten-
tially lead to violations. For this we need first some notation. Given a set of con-
straints s we define the triple Ω = 〈Ω1, Ω2, C(�k)〉 ≡ 〈's(1, 's(2, s\ ('s(1∪'s(2)〉.
We sometimes abuse notation and consider Ω also as a set of constraints given
by the union of its first, second and third projection, and we will also consider a
set of constraints as a single proposition given by the conjunction of its elements.
The set C(�k) contains relational constraints coming from either preconditions
or invariants or, from the rule Proof-Step-Lap-Gen. The potentially empty
vector �k = K1, . . .Kn is the set of fresh symbols K generated by that rule. In
the rest of the paper we will assume the following simplifying assumption.

Assumption 1 Consider c ∈ Cr with output variable o, then c is such that
{{{〈m1,m2, c, [], [], s〉}}}
∗ G and ∀H〈Ω1, C(�k), Ω2〉 ∈ H ∈ G.Final(H)∧o1 =
o2 =⇒ Ω1 ⇔ Ω2.

This assumption allow us to consider only programs for which it is necessary
for the output variable on both runs to assume the same value, that the two
runs follow the same branches. That is, if the two output differ then the two
executions must have, at some point, taken different branches.

The following definition will be used to distinguish relational traces which
are reachable on one run but not on the other. We call these traces orthogonal.

Definition 5. A final relational symbolic trace is orthogonal when its set of
constraints is such that ∃σ.σ �|= Ω2 and σ |= Ω1∧C(�k). That is a trace for which

¬(Ω1 ∧ C(�k) =⇒ Ω2) is satisfiable.

The next definition, instead, will be used to isolate relational traces for which
it is not possible that the left one is executed but the right one is not. We call
these traces specular.

Definition 6. A final relational symbolic trace is specular if ∃�k.Ω1 ∧C(�k) =⇒
Ω2.
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The constraint Ω1 ∧ C(�k) includes all the constraints coming from the left pro-
jection’s branching of the symbolic execution and all the relational assumptions
such as the adjacency condition, and all constraints added by the potentially fired
Proof-Step-Lap-Gen rule. A specular trace is such that its left projection con-
straints plus the relational assumptions imply the right projection constraints.
We will now describe our three strategies.

Strategy A In this strategy CRSE uses only the rule Proof-Step-Avoc for
sampling instructions, also this strategy searches for orthogonal relational traces.
Under assumption 1, if this happens for a program then it must be the case that
the program can output one value on one run with some probability but the
same value has 0 probability of being output on the second run. This implies
that for some input the program has an unbounded privacy loss. To implement
this strategy CRSE looks for orthogonal relational traces 〈m1,m2, skip, p1, p2, Ω〉
such that: ∃σ.σ |= Ω1 ∧C(�k) but σ �|= Ω2. Notice that using this strategy �k will
always be empty, as the rule used for samplings does not introduce any coupling
between the two samples.

Strategy B This strategy symbolically executes the program in order to find
a specular trace for which no matter how we relate, within the budget, the
various pairs of samples Xi

1, X
i
2 in the two runs - using the relational schema

Xi
1+Ki = Xi

2 - the postcondition is always false. That is CRSE looks for specular

relational traces 〈m1,m2, skip, p1, p2, Ω〉 such that: ∀�k.[(Ω1 ∧ C(�k) =⇒ Ω2) ∧
�εc ≤ ε)�〈m1|m2〉] =⇒ �o1 �= o2�〈m1|m2〉.

Strategy C This strategy looks for relational traces for which the output
variable takes the same value on the two runs but too much of the budget
was spent. That is CRSE looks for traces 〈m1,m2, skip, p1, p2, Ω〉 such that:

∀�k.[Ω1 ∧ C(�k) ∧Ω2 =⇒ �o1 = o2�〈m1|m2〉] =⇒ �εc > ε�〈m1|m2〉.
Of the presented strategies only strategy A is sound with respect to coun-

terexample finding, while the other two apply when the algorithm cannot be
proven differentially private by any combination of the rules. In this second case
though, CRSE provides counterexamples which agree with other refutation ori-
ented results in literature. This strategies are hence termed useful because they
amount to heuristics that can be applied in some situations.

8 Examples

In this section we will review the examples presented in Section 2 and variations
thereof to show how CRSE works.

Unsafe Laplace mechanism: Algorithm 4. This algorithm is not ε-d.p be-
cause the noise is a constant and it is not calibrated to the sensitivity r of
the query q. This translates in any attempt based on coupling rules to use too
much of the budget. This program has only one possible final relational trace:
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〈m1,m2, skip, p1, p2, 〈Ω1, C(�k,Ω2)〉〉. Since there are no branching instructions
Ω1 = {'2E(1 > 0} and Ω2 = ∅, where m1(ε) = m2(ε) = E. Since there is one

sampling instruction C(�k) will include {|Qd1−Qd2| ≤ R,P1+K = P2, Ec =| K |
·K ′ ·E,O1 = P1+Qd1, O2 = P2+Qd2}, with m1(o) = O1,m2(o) = O2,m1(εc) =
m2(εc) = Ec,mi(ρi) = Pi. Intuitively, given this set of constraints, if it has to
be the case that O1 = O2 then, Qd1 − Qd2 = K. But Qd1 − Qd2 can be R and
hence, Ec is at least R. So, if we want to equate the two output we need to spend
r times the budget. Any relational input satisfying the precondition will give us
a counterexample, provided the two projections are different.

Algorithm 4
A buggy Laplace mechanism

Input: q: D → Z, D : D, ε : R+

Output: o : {true, false}
Precondition
D1 ∼ D2 ⇒ |q(D1)− q(D2)| ≤ r
Postcondition o1 = o2

1: v ← q(D)

2: ρ
$← lapε(0)

3: o← v + ρ
4: return o

A safe Laplace mechanism. By sub-
stituting line 2 in Algorithm 4 with

ρ
$←−lapr∗ε(0) we get an ε-DP algorithm. In-

deed when executing that line CRSE would
generate the following constraint P1+K0 =
P2∧ | K0 + 0 − 0 |≤ K1 ∧ O1 = V1 + P1 ∧
O2 = V2 +P2. Which by instantiating K =
0,K1 = V2− V1 implies O1 = O2 ∧Ec ≤ E.

Unsafe sparse vector implementation:
Algorithm 2. We already discussed why
this algorithm is not ε-differentially private.
Algorithm 2 satisfies Assumption 1 because
it outputs the whole array o which takes

values of the form ⊥i, t or ⊥n for 1 ≤ i ≤ n and t ∈ R. The array, hence, encodes
the whole trace. So if two runs of the algorithm output the same value it must
be the case that they followed the same branching instructions. Let’s first notice
that the algorithm is trivially ε differentially private, for any ε, when the number
of iterations n is less than or equal to 4.

Fig. 11: Two runs of Alg. 2.

Indeed it is enough to apply
the sequential composition theo-
rem and get the obvious bound
ε
4 · n.

CRSE can prove this by ap-
plying the rule Proof-Step-
Lap-Gen n times, and then
choosing K1, . . . ,Kn all equal to
0. This would imply the statement
of equality of the output variables
spending less than ε. A potential
counterexample can be found in
5 iterations. If we apply strategy

B to this algorithm and follow the relational symbolic trace that applies the
rule Proof-Step-Lap-Gen for all the samplings we can isolate the relational
specular trace shown in Figure 11, which corresponds to the left execution fol-
lowing the false branch for the first four iterations and then following the true
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branch and setting the fifth element of the array to the sampled value. Let’s
denote the respective final relational configuration by 〈m1,m2, skip, p1, p2, s〉.
The set of constraints is as follows: s = 〈Ω1, C(�k), Ω2〉 = 〈{T1 > S1

1 , T1 >
S2
1 , T1 > S3

1 , T1 > S4
1 , T1 ≤ S5

1}, {T1 + k0 = T2, S
1
1 + k1 = S1

2 , S
2
1 + k2 =

S2
2 , S

3
1 + k3 = S3

2 , S
4
1 + k4 = S4

2 , S
5
1 + k5 = S5

2 , E6 = k0
ε
2 + ε

4

4∑
i=1

ki . . . }, {T2 >

S1
2 , T2 > S2

2 , T2 > S3
2 , T2 > S4

2 , T2 ≤ S5
2}〉 with m1(εc) = m2(εc) = E6,m1(o) =

[S1
1 , . . . , S

5
1 ],m2(o) = [S1

2 , . . . , S
5
2 ],m1(t) = T1,m2(t) = T2.

We can see that strategy B applies, because we have |= ∀�k.[(Ω1 ∧ C(�k) =⇒
Ω2) ∧ �εc ≤ ε)�〈m1|m2〉] =⇒ �o1 �= o2�〈m1|m2〉. Computing the probability
associated with these two traces we can verify that we have a counterexample.
This pair of traces is, in fact, the same that has been found in [16] for a slightly
more general version of Algorithm (2). Strategy B selects this relational trace
since in order to make sure that the traces follow the same branches, the coupling
rules enforce necessarily that the two samples released are different, preventing
CRSE to prove equality of the output variables in the two runs.

Unsafe sparse vector implementation: Algorithm 3. Also this algorithm
satisfies Assumption 1. The algorithm is ε-differentially private for one iteration.
This is because, intuitively, adding noise to the threshold protects the result of
the query as well at the branching instruction, but only for one iteration. The
algorithm is not ε-differentially private, for any finite ε already at the second
iteration, and a witness for this can be found using CRSE. We can see this using
strategy B. Thanks to this strategy we will isolate a relational orthogonal trace,
similarly to what has been found in [16] for the same algorithm. CRSE will unfold
the loop twice, and it will scan all relational traces to see if there is an orthogonal
trace. In particular, the relational trace that corresponds to the output o1 =
o2 = [⊥,�], that is the the trace with set of constraints 〈Ω1, C(�k), Ω2〉 = 〈{T1 >
q1d1, T1 ≤ q2d1}, {|q1d1 − q1d2| ≤ 1, |q2d1 − q2d2| ≤ 1}{T2 > q1d2, T2 ≤ q2d2}〉.
Since the vector �k is empty we can omit it and just write C. It is easy to see now
that the following sigma: σ ≡ [q1d1 �→ 0, q2d1 �→ 1, q1d2 �→ 1, q2d2 �→ 0], proves
that this relational trace is orthogonal: that is σ |= Ω1 ∧ C, but σ �|= Ω2.

Indeed if we consider two inputs D1, D2 and two queries q1, q2 such that:
q1(D1) = q2(D2) = 0, q2(D1) = q1(D2) = 1 we get that the probability of
outputting the value o = [⊥,�] is positive in the first run, but it is 0 on the
second. Hence, the algorithm can only be proven to be ∞-differentially private.

A safe sparse vector implementation. Algorithm 2 can be proven ε-d.p if
we replace o[i]←� to line 7. Let us consider a proof of this statement for n = 5.
CRSE will try to prove the following postconditions: o1 = [�,⊥, . . . ,⊥] =⇒
o2 = [�,⊥, . . . ,⊥] ∧ εc ≤ ε, . . . , o1 = [⊥, . . . ,⊥,�] =⇒ o2 = [⊥, . . . ,⊥,�] ∧
εc ≤ ε. The only interesting iteration will be the i-th one, in all the others the
postcondition will be vacuously true. Also, the budget spent will be k0

ε
2 , the one

spent for the threshold. For all the other sampling instruction we can spend 0 by
just setting kj = q[j](D2)− q[j](D1) for j �= i, that is by coupling ŝ1 + kj = ŝ2,
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with kj = q[j](D2) − q[j](D1), spending |kj + q[j](D2) − q[j](D1)| = 0. So, at
the i-th iteration the samples are coupled ŝ1+ki = ŝ2, with ki = 1. So if ŝ1 ≥ t̂1
then also ŝ2 ≥ t̂2, and also, if ŝ1 < t̂1 then also ŝ2 < t̂2. This implies that at
th i-th iteration we enter on the right run the true branch iff we enter the true
branch on the left one. This by spending |ki + q[i](D2) − q[i](D1)| ε4 ≤ 2 ε4 . The
total privacy budget spent will then be equal to ε.

9 Related Works

There is now a wide array of formal techniques for reasoning about differen-
tial privacy, e.g. [1–6, 12, 15, 18, 20–23, 23, 24, 26, 27]. We will discuss here the
techniques that are closest to our work. In [1] the authors devised a synthe-
sis framework to automatically discover proofs of privacy using coupling rules
similar to ours. However, their approach is not based on relational symbolic
execution but on synthesis technique. Moreover, their framework cannot be di-
rectly used to find violations of differential privacy. In [2] the authors devise a
decision logic for differential privacy which can soundly prove or disprove differ-
ential privacy. The programs considered there do not allow assignments to real
and integer variables inside the body of while loops. While their technique is
different from our, their logic could be potentially integrated in our framework
as a decision procedure. In the recent concurrent work [23], the authors propose
an automated technique for proving or finding violations to differential privacy
based on program analysis, standard symbolic execution and on the notion of
randomness alignment, which in their approach plays the role that approximate
coupling plays for us here. Their approach focuses on efficiency and scalability,
while we focus here more on the fundational aspects of our technique.

Another recent concurrent work [27] combines testing based on (unary) sym-
bolic execution with approximate coupling for proving and finding violations to
differential privacy. Their symbolic execution engine is similar to our SPFOR,
and is used to reduce the numbers of tests that need to be generated, and for
building privacy proofs from concrete executions. Their approach relies more
directly on testing, providing an approximate notion of privacy. As discussed in
their paper this could be potentially mitigated by using a relational symbolic
execution engine as the one we propose here, at the cost of using more complex
constraints. Another related work is [15], proposing model checking for finding
counterexamples to differential privacy. The main difference with our work is in
the basic technique and in the fact that model checking reason about a model
of the code, rather than the code itself. They also consider the above threshold
example and they are able to handle only a finite number of iterations.

Other work has studied how to find violations to differential privacy through
testing [5, 6]. The approaches proposed in [5, 6] differ from ours in two ways:
first, they use a statistical approach; second, they look at concrete values of the
data and the privacy parameters. By using symbolic execution we are able to
reason about symbolic values, and so consider ε-differential privacy for any finite
ε. Moreover, our technique does not need sampling - although we still need to
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compute distributions to confirm a violation. Our work can be seen as a proba-
bilistic extension of the framework presented in [10], where sampling instructions
in the relational symbolic semantics are handled through rules inspired by the
logic apRHL+ [3]. This logic can be used to prove differential privacy but does
not directly help in finding counterexamples when the program is not private.

10 Conclusion

We presented CRSE: a symbolic execution engine framework integrating rela-
tional reasoning and probabilistic couplings. The framework allows both prov-
ing and refuting differential privacy. When proving CRSE can be seen as strong
postcondition calculus. When refuting CRSE uses several strategies to isolate
potentially dangerous traces. Future work includes interfacing more efficiently
CRSE with numeric solvers to find maximums of ratios of probabilities of traces.
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3. Barthe, G., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.Y.: Proving differential
privacy via probabilistic couplings. In: LICS ’16. pp. 749–758. ACM, New York,
NY, USA (2016)
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