26,281 research outputs found

    Interference Effects in Quantum Belief Networks

    Full text link
    Probabilistic graphical models such as Bayesian Networks are one of the most powerful structures known by the Computer Science community for deriving probabilistic inferences. However, modern cognitive psychology has revealed that human decisions could not follow the rules of classical probability theory, because humans cannot process large amounts of data in order to make judgements. Consequently, the inferences performed are based on limited data coupled with several heuristics, leading to violations of the law of total probability. This means that probabilistic graphical models based on classical probability theory are too limited to fully simulate and explain various aspects of human decision making. Quantum probability theory was developed in order to accommodate the paradoxical findings that the classical theory could not explain. Recent findings in cognitive psychology revealed that quantum probability can fully describe human decisions in an elegant framework. Their findings suggest that, before taking a decision, human thoughts are seen as superposed waves that can interfere with each other, influencing the final decision. In this work, we propose a new Bayesian Network based on the psychological findings of cognitive scientists. We made experiments with two very well known Bayesian Networks from the literature. The results obtained revealed that the quantum like Bayesian Network can affect drastically the probabilistic inferences, specially when the levels of uncertainty of the network are very high (no pieces of evidence observed). When the levels of uncertainty are very low, then the proposed quantum like network collapses to its classical counterpart

    Brain covariance selection: better individual functional connectivity models using population prior

    Get PDF
    Spontaneous brain activity, as observed in functional neuroimaging, has been shown to display reproducible structure that expresses brain architecture and carries markers of brain pathologies. An important view of modern neuroscience is that such large-scale structure of coherent activity reflects modularity properties of brain connectivity graphs. However, to date, there has been no demonstration that the limited and noisy data available in spontaneous activity observations could be used to learn full-brain probabilistic models that generalize to new data. Learning such models entails two main challenges: i) modeling full brain connectivity is a difficult estimation problem that faces the curse of dimensionality and ii) variability between subjects, coupled with the variability of functional signals between experimental runs, makes the use of multiple datasets challenging. We describe subject-level brain functional connectivity structure as a multivariate Gaussian process and introduce a new strategy to estimate it from group data, by imposing a common structure on the graphical model in the population. We show that individual models learned from functional Magnetic Resonance Imaging (fMRI) data using this population prior generalize better to unseen data than models based on alternative regularization schemes. To our knowledge, this is the first report of a cross-validated model of spontaneous brain activity. Finally, we use the estimated graphical model to explore the large-scale characteristics of functional architecture and show for the first time that known cognitive networks appear as the integrated communities of functional connectivity graph.Comment: in Advances in Neural Information Processing Systems, Vancouver : Canada (2010

    Model-Based Method for Social Network Clustering

    Full text link
    We propose a simple mixed membership model for social network clustering in this note. A flexible function is adopted to measure affinities among a set of entities in a social network. The model not only allows each entity in the network to possess more than one membership, but also provides accurate statistical inference about network structure. We estimate the membership parameters by using an MCMC algorithm. We evaluate the performance of the proposed algorithm by applying our model to two empirical social network data, the Zachary club data and the bottlenose dolphin network data. We also conduct some numerical studies for different types of simulated networks for assessing the effectiveness of our algorithm. In the end, some concluding remarks and future work are addressed briefly

    Learning Large-Scale Bayesian Networks with the sparsebn Package

    Get PDF
    Learning graphical models from data is an important problem with wide applications, ranging from genomics to the social sciences. Nowadays datasets often have upwards of thousands---sometimes tens or hundreds of thousands---of variables and far fewer samples. To meet this challenge, we have developed a new R package called sparsebn for learning the structure of large, sparse graphical models with a focus on Bayesian networks. While there are many existing software packages for this task, this package focuses on the unique setting of learning large networks from high-dimensional data, possibly with interventions. As such, the methods provided place a premium on scalability and consistency in a high-dimensional setting. Furthermore, in the presence of interventions, the methods implemented here achieve the goal of learning a causal network from data. Additionally, the sparsebn package is fully compatible with existing software packages for network analysis.Comment: To appear in the Journal of Statistical Software, 39 pages, 7 figure
    corecore