184 research outputs found

    Rank Minimization over Finite Fields: Fundamental Limits and Coding-Theoretic Interpretations

    Full text link
    This paper establishes information-theoretic limits in estimating a finite field low-rank matrix given random linear measurements of it. These linear measurements are obtained by taking inner products of the low-rank matrix with random sensing matrices. Necessary and sufficient conditions on the number of measurements required are provided. It is shown that these conditions are sharp and the minimum-rank decoder is asymptotically optimal. The reliability function of this decoder is also derived by appealing to de Caen's lower bound on the probability of a union. The sufficient condition also holds when the sensing matrices are sparse - a scenario that may be amenable to efficient decoding. More precisely, it is shown that if the n\times n-sensing matrices contain, on average, \Omega(nlog n) entries, the number of measurements required is the same as that when the sensing matrices are dense and contain entries drawn uniformly at random from the field. Analogies are drawn between the above results and rank-metric codes in the coding theory literature. In fact, we are also strongly motivated by understanding when minimum rank distance decoding of random rank-metric codes succeeds. To this end, we derive distance properties of equiprobable and sparse rank-metric codes. These distance properties provide a precise geometric interpretation of the fact that the sparse ensemble requires as few measurements as the dense one. Finally, we provide a non-exhaustive procedure to search for the unknown low-rank matrix.Comment: Accepted to the IEEE Transactions on Information Theory; Presented at IEEE International Symposium on Information Theory (ISIT) 201

    MDS array codes for correcting a signle criss-cross error

    Get PDF
    We present a family of maximum-distance separable (MDS) array codes of size (p-1)×(p-1), p a prime number, and minimum criss-cross distance 3, i.e., the code is capable of correcting any row or column in error, without a priori knowledge of what type of error occurred. The complexity of the encoding and decoding algorithms is lower than that of known codes with the same error-correcting power, since our algorithms are based on exclusive-OR operations over lines of different slopes, as opposed to algebraic operations over a finite field. We also provide efficient encoding and decoding algorithms for errors and erasures

    Fuzzy Authentication using Rank Distance

    Full text link
    Fuzzy authentication allows authentication based on the fuzzy matching of two objects, for example based on the similarity of two strings in the Hamming metric, or on the similiarity of two sets in the set difference metric. Aim of this paper is to show other models and algorithms of secure fuzzy authentication, which can be performed using the rank metric. A few schemes are presented which can then be applied in different scenarios and applications.Comment: to appear in Cryptography and Physical Layer Security, Lecture Notes in Electrical Engineering, Springe

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    A Rank-Metric Approach to Error Control in Random Network Coding

    Full text link
    The problem of error control in random linear network coding is addressed from a matrix perspective that is closely related to the subspace perspective of K\"otter and Kschischang. A large class of constant-dimension subspace codes is investigated. It is shown that codes in this class can be easily constructed from rank-metric codes, while preserving their distance properties. Moreover, it is shown that minimum distance decoding of such subspace codes can be reformulated as a generalized decoding problem for rank-metric codes where partial information about the error is available. This partial information may be in the form of erasures (knowledge of an error location but not its value) and deviations (knowledge of an error value but not its location). Taking erasures and deviations into account (when they occur) strictly increases the error correction capability of a code: if ÎŒ\mu erasures and ÎŽ\delta deviations occur, then errors of rank tt can always be corrected provided that 2t≀d−1+ÎŒ+ÎŽ2t \leq d - 1 + \mu + \delta, where dd is the minimum rank distance of the code. For Gabidulin codes, an important family of maximum rank distance codes, an efficient decoding algorithm is proposed that can properly exploit erasures and deviations. In a network coding application where nn packets of length MM over FqF_q are transmitted, the complexity of the decoding algorithm is given by O(dM)O(dM) operations in an extension field FqnF_{q^n}.Comment: Minor corrections; 42 pages, to be published at the IEEE Transactions on Information Theor

    List and Unique Error-Erasure Decoding of Interleaved Gabidulin Codes with Interpolation Techniques

    Full text link
    A new interpolation-based decoding principle for interleaved Gabidulin codes is presented. The approach consists of two steps: First, a multi-variate linearized polynomial is constructed which interpolates the coefficients of the received word and second, the roots of this polynomial have to be found. Due to the specific structure of the interpolation polynomial, both steps (interpolation and root-finding) can be accomplished by solving a linear system of equations. This decoding principle can be applied as a list decoding algorithm (where the list size is not necessarily bounded polynomially) as well as an efficient probabilistic unique decoding algorithm. For the unique decoder, we show a connection to known unique decoding approaches and give an upper bound on the failure probability. Finally, we generalize our approach to incorporate not only errors, but also row and column erasures.Comment: accepted for Designs, Codes and Cryptography; presented in part at WCC 2013, Bergen, Norwa
    • 

    corecore