221,039 research outputs found
Weakly-supervised Dictionary Learning
We present a probabilistic modeling and inference framework for
discriminative analysis dictionary learning under a weak supervision setting.
Dictionary learning approaches have been widely used for tasks such as
low-level signal denoising and restoration as well as high-level classification
tasks, which can be applied to audio and image analysis. Synthesis dictionary
learning aims at jointly learning a dictionary and corresponding sparse
coefficients to provide accurate data representation. This approach is useful
for denoising and signal restoration, but may lead to sub-optimal
classification performance. By contrast, analysis dictionary learning provides
a transform that maps data to a sparse discriminative representation suitable
for classification. We consider the problem of analysis dictionary learning for
time-series data under a weak supervision setting in which signals are assigned
with a global label instead of an instantaneous label signal. We propose a
discriminative probabilistic model that incorporates both label information and
sparsity constraints on the underlying latent instantaneous label signal using
cardinality control. We present the expectation maximization (EM) procedure for
maximum likelihood estimation (MLE) of the proposed model. To facilitate a
computationally efficient E-step, we propose both a chain and a novel tree
graph reformulation of the graphical model. The performance of the proposed
model is demonstrated on both synthetic and real-world data
Interpretable multiclass classification by MDL-based rule lists
Interpretable classifiers have recently witnessed an increase in attention
from the data mining community because they are inherently easier to understand
and explain than their more complex counterparts. Examples of interpretable
classification models include decision trees, rule sets, and rule lists.
Learning such models often involves optimizing hyperparameters, which typically
requires substantial amounts of data and may result in relatively large models.
In this paper, we consider the problem of learning compact yet accurate
probabilistic rule lists for multiclass classification. Specifically, we
propose a novel formalization based on probabilistic rule lists and the minimum
description length (MDL) principle. This results in virtually parameter-free
model selection that naturally allows to trade-off model complexity with
goodness of fit, by which overfitting and the need for hyperparameter tuning
are effectively avoided. Finally, we introduce the Classy algorithm, which
greedily finds rule lists according to the proposed criterion. We empirically
demonstrate that Classy selects small probabilistic rule lists that outperform
state-of-the-art classifiers when it comes to the combination of predictive
performance and interpretability. We show that Classy is insensitive to its
only parameter, i.e., the candidate set, and that compression on the training
set correlates with classification performance, validating our MDL-based
selection criterion
Multi-Object Classification and Unsupervised Scene Understanding Using Deep Learning Features and Latent Tree Probabilistic Models
Deep learning has shown state-of-art classification performance on datasets
such as ImageNet, which contain a single object in each image. However,
multi-object classification is far more challenging. We present a unified
framework which leverages the strengths of multiple machine learning methods,
viz deep learning, probabilistic models and kernel methods to obtain
state-of-art performance on Microsoft COCO, consisting of non-iconic images. We
incorporate contextual information in natural images through a conditional
latent tree probabilistic model (CLTM), where the object co-occurrences are
conditioned on the extracted fc7 features from pre-trained Imagenet CNN as
input. We learn the CLTM tree structure using conditional pairwise
probabilities for object co-occurrences, estimated through kernel methods, and
we learn its node and edge potentials by training a new 3-layer neural network,
which takes fc7 features as input. Object classification is carried out via
inference on the learnt conditional tree model, and we obtain significant gain
in precision-recall and F-measures on MS-COCO, especially for difficult object
categories. Moreover, the latent variables in the CLTM capture scene
information: the images with top activations for a latent node have common
themes such as being a grasslands or a food scene, and on on. In addition, we
show that a simple k-means clustering of the inferred latent nodes alone
significantly improves scene classification performance on the MIT-Indoor
dataset, without the need for any retraining, and without using scene labels
during training. Thus, we present a unified framework for multi-object
classification and unsupervised scene understanding
- …
