9,939 research outputs found

    On some approximation problems concerning sparse polynomials over finite fields

    Get PDF
    AbstractWe obtain new lower bounds on the number of non-zeros of sparse polynomials and give a fully polynomial time (ε, δ) approximation algorithm for the number of non-zeros of multivariate sparse polynomials over a finite field of q elements and degree less than q − 1. This partially answers an open problem of D. Grigoriev and M. Karpinski. Also, probabilistic and deterministic algorithms for testing identity to zero of a sparse polynomial given by a “black-box” are given. Finally, we propose an algorithm to estimate the size of the image of a univariate sparse polynomial

    Elimination for generic sparse polynomial systems

    Get PDF
    We present a new probabilistic symbolic algorithm that, given a variety defined in an n-dimensional affine space by a generic sparse system with fixed supports, computes the Zariski closure of its projection to an l-dimensional coordinate affine space with l < n. The complexity of the algorithm depends polynomially on combinatorial invariants associated to the supports.Comment: 22 page

    Computing sparse multiples of polynomials

    Full text link
    We consider the problem of finding a sparse multiple of a polynomial. Given f in F[x] of degree d over a field F, and a desired sparsity t, our goal is to determine if there exists a multiple h in F[x] of f such that h has at most t non-zero terms, and if so, to find such an h. When F=Q and t is constant, we give a polynomial-time algorithm in d and the size of coefficients in h. When F is a finite field, we show that the problem is at least as hard as determining the multiplicative order of elements in an extension field of F (a problem thought to have complexity similar to that of factoring integers), and this lower bound is tight when t=2.Comment: Extended abstract appears in Proc. ISAAC 2010, pp. 266-278, LNCS 650

    Efficient Computation of the Characteristic Polynomial

    Full text link
    This article deals with the computation of the characteristic polynomial of dense matrices over small finite fields and over the integers. We first present two algorithms for the finite fields: one is based on Krylov iterates and Gaussian elimination. We compare it to an improvement of the second algorithm of Keller-Gehrig. Then we show that a generalization of Keller-Gehrig's third algorithm could improve both complexity and computational time. We use these results as a basis for the computation of the characteristic polynomial of integer matrices. We first use early termination and Chinese remaindering for dense matrices. Then a probabilistic approach, based on integer minimal polynomial and Hensel factorization, is particularly well suited to sparse and/or structured matrices

    A note on Probably Certifiably Correct algorithms

    Get PDF
    Many optimization problems of interest are known to be intractable, and while there are often heuristics that are known to work on typical instances, it is usually not easy to determine a posteriori whether the optimal solution was found. In this short note, we discuss algorithms that not only solve the problem on typical instances, but also provide a posteriori certificates of optimality, probably certifiably correct (PCC) algorithms. As an illustrative example, we present a fast PCC algorithm for minimum bisection under the stochastic block model and briefly discuss other examples
    corecore