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Abstract 

We obtain new lower bounds on the number of non-zeros of sparse polynomials and give a 
fully polynomial time (&,6) approximation algorithm for the number of non-zeros of multivariate 
sparse polynomials over a finite field of q elements and degree less than q - 1. This partially 
answers an open problem of D. Grigoriev and M. Karpinski. Also, probabilistic and determin- 
istic algorithms for testing identity to zero of a sparse polynomial given by a “black-box” are 
given. Finally, we propose an algorithm to estimate the size of the image of a univariate sparse 
polynomial. 

0. Introduction 

In the recent paper [4] (improving and generalizing some previous results of [3,6,9]) 

lower bounds have been obtained for the number of zeros and non-zeros of a t-sparse 

multivariate polynomial over a finite field 5, of q elements. As it was mentioned 

in [4] there is no real chance to improve essentially the lower bound for the number 

of zeros (as it would imply a randomized subexponential algorithm for the famous 

3-SAT problem) but an analogous question for the number of non-zeros was posed as 

an open problem. 

Here we show that indeed for a very wide class of polynomials a lower bound of 

the type conjectured in [4] holds. We show that, roughly speaking, the density of non- 

zeros is at least t-’ rather than t-“gq as in [4]. Note that for arbitrary polynomials 

(i.e. when degrees up to q ~ 1 are allowed) the mentioned lower bound t-“‘gq cannot 

be possibly sharpened (see the remark after Theorem 2 of [4]). Of course the obtained 

improvement immediately leads to an improved Monte-Carlo approximation algorithm 

for the number of non-zeros of a t-sparse polynomial and to an RNC-algorithm for 

testing identity to zero of a sparse polynomials given by a “black-box”. It gives a 
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polynomial time approximation algorithm even in case of growing q (the previous one 

needs q to be fixed as contains logq in the exponent). 

Then we consider a related question about the zero-testing of t-sparse multivariate 

polynomials over IF, in the black-box model of [2,5, 161. For the case on a non-prime 

field we obtain several improvements of previously known results. It is hoped they can 

be applied to the more general problem of polynomial interpolation. 

Finally we show that in some cases, the image size of a univariate t-sparse polyno- 

mials can be estimated quite quickly. For example, for any A > 0, say, one can check 

if it is less than log” q in polynomial time. 

1. Counting non-zeros of sparse polynomials 

Let .0x1 ,...,&n) E F&l,. . . ,x,,J be a t-sparse polynomial (i.e. a polynomial con- 

taining exactly t monomials). Denote by R(f) the number of non-zeros off over ‘FG, 

that is the number of (ai ,. . . ,a,) E [F,*]” such that f(ai,. . . ,a,) # 0. 

Theorem 1. Let f be a t-sparse polynomial in m variables over IF, with t > 1 and 

deg f <q - 2 then R(f)3(q - l)“/t. 

Proof. Let us use induction in m. For m = 1, let us consider a polynomial 

with ci E [FG, i = l,..., t, and O<nl < ... < n,<q-2. Let 0 be a primitive root of 

[F,. Then R(f) is the number of u = 0,. . . , q - 2 such that f(P) # 0. Evidently, it is 

enough to show that for any integer h, among the following t elements 

f(P), u=h ,..., h+t-1, 

there exists at least one non-zero. 

Indeed if all of them equal zero, then we get that the following system of linear 

equations 

hziBl”i =O, j=O ,..., t-l, 
i=l 

has a non-zero solution zi = ciOhnl, i = 1,. , t. On the other hand, the system has 

a Vandermonde matrix with different entries 8”’ , . . . ,8” (as ni $ n,j (mod q - 1) for 

1 <i < j <q - 1). The obtained contradiction proves the estimate for m = 1. Now, let 

us consider the general case. We represent a t-sparse polynomial in the form 

f(XI,...,%) Cfi(Xl,...,Xm-1)x;, 
i=l 

where fi(xl,. . ,X,-l ), i = 1,. . . , s, are some non-zero polynomials over [F, and 0 < nI 
< . . . < nl <q - 2. It is evident that at least one of the coefficient polynomials is 
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r-sparse with rd t/s. Therefore, from the induction conjecture we get that there are 

at least (q - l)+‘/r vectors (a, ,..., a,_~) E [5q*lm-’ such that f(ai ,..., a,_i,x,) is 

a non-zero polynomial thus it is a k-sparse polynomial with 1 <k <s and therefore 

has at least (q - l)/ka(q - 1)/s non-zeros. Thus R(f)>(q - l)m-‘rP’(q - l)k-' > 

(q - l)“t_‘. 0 

Now let us consider the total number of non-zeros r(f) of .f over iF, that is the 

number of (ai, . . . ,a,) E [F,lm such that f(ar,. ,a,) # 0. 

As in [4,8], denote by G(f) the set of of (al.. . ,a,?,) E [1F,]” for which at least 

one of the monomials containing in the representation of ,f is not equal to zero. 

Theorem 2. Let f be a t-sparse polynomial in m vuriables over 1F, with t > 0 und 

degf bq - 2, tlzen T(f)>, lG(.f)l/t. 

Proof. For an n-dimensional (0, 1) vector )L = (A,. . , A,) E (0, 1 }” denote by Gi.( f ) 

the subset of G(f) containing vectors having zero coordinates on the same positions 

where i. has, that is, 

G;(,f) = {(a~, .,a,)~G(f)/a;=O~3,,=0, i=l,..., m}. 

If wt(1.) denote the Hamming weight of i, (i.e. the number of non-zero coordinates) 

then either IG;(f )I = (q - l)“‘ci) or G,(f) = 0. 

Let us denote by f;, the polynomial in wt(i) variables obtained from f by special- 

ization to zero all variables xi having the index i, 1 <i < m such that i,, = 0. Evidently, 

T(f 1 = c KJ;), IG(f)l = C lG;.(f)l 
;.t{o.l},J~ iE:{O.l}“’ 

Now it is enough to prove that R(f;.)> lGi(,f)l/t for all i, E (0. 1)“. Indeed, if G;.(,f’) = 

8 then it is evident, otherwise f; is a non-zero s-sparse polynomial with 1 <s < t and 

thus applying Theorem 1 we get the desired inequality. 0 

Theorem 3. Let f be a t-sparse polynomial in m rariubles owr IF, \iith deg .f < q - 2 

then for uny B > 0 and 6 > 0 there exists a randomized algorithm using O(m log q) 

random bits and O(z-*mt log q log( l/S)) arithmetical operations in [F, and computimq 

an upproximation T to T(f) such that 

Pr{IT - T(f)1 < &T(f)} > 1 - 6. 

Proof. Using the estimate of Theorem 2, and the efficient construction of the set G(,f) 

from [8] one gets the pointed out algorithm (see [6]). 3 

Also, as in [8], one can get a parallel version of the last algorithm. Unfortunately, 

our restriction on the degree deg f <q - 2 does not allow us to consider a more 

interesting and important question about the number of zeros of a polynomial (the 

standard reduction use an auxiliary polynomial F = ,fq-’ - 1, see [3,4,8]). Moreover, 
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as we have mentioned, it was shown in [4] that without some other restriction on f 

their estimate cannot be improved. On the other hand, we conjecture that in this special 

case of polynomial of the shape fq-’ - 1 the result of [4] is not sharp. 

2. Zero testing of sparse polynomials 

A t-sparse polynomial f of degree degf <d in m variables over IF, is said to be 

given by a “black-box” if in any point over any extension [F,I, I = 1,2,. . . , we can 

compute it in time (It logd log q) O(‘) (but we do not know its coefficients). 

A typical example is a polynomial given by the determinant of a matrix with poly- 

nomial entries. 

From the definition above, the question about constructing the corresponding exten- 

sions [F,, of iF, naturally arises. We do not consider this question here in details and 

in all algorithms below we assume that we are given the corresponding extension but 

it is easy to reformulate all of them in a form taking into account the cots of such 

construction (without loosing the main features of the algorithm). 

Indeed, during recent years a very substantial progress in this area has been achieved 

(for a survey see Ch. 2 of [ 151). Say for the field of Theorem 4 below we may use 

the probabilistic algorithm from [ 1 l] with expected number of 

O( z2 log2 1 log log 1 + 1 log q log 1 log log I) 

arithmetical operations over [F,, as for Theorem 5 we may apply the deterministic 

algorithm from [ 131 using 

Pp”2(lOg 1 log q)O(‘) (1) 

arithmetical operations over [F,, where p is the characteristic of IF, (thus it is a poly- 

nomial time algorithm for fields of small characteristic). There are many other fast 

algorithms as well. 

Moreover, as in fact everywhere, we need only to have an extension of degree 1 

exceeding some lower bound LO (rather than satisfying the following stronger condition 

I = LO) we can use an algorithm of [l] that for any LO in polynomial time (LO log q)‘(l) 

constructs an extension IF,/ of degree 1 with 

Lo~I~cLologq, 

where c > 0 is an effectively computable absolute constant, 

(2) 

Theorem 4. Let f be a t-sparse polynomial in m variables over F, with 0 <t < z and 

deg f <d and given by a “black-box”. Then for any 6 > 0 there is an algorithm for 

testing identity to zero of f, using O(mzlogq log( l/6)) random bits, O(z log( l/6)) 

parallel evaluations of f over [F, I with any 12 [log(d + 2)/ logq] and having the 

probability of the correct answer at least 1 - 6. 
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Proof. Choosing N = 14~ log( l/S)] + 1 points from [[F;,]” at random in parallel and 

using the estimate of Theorem 1 (as d <q’), one gets the desired algorithm (see [6]). 

0 

Taking into account the remarks about constructing finite fields, in particular, the 

estimate (2) we get the following probabilistic polynomial-time test. 

Corollary. Let f be a t-sparse polynomial in m variables over F, with 0 <t <t and 

deg f <d and given by a “black-box” then for any 6 > 0 there is an algorithm for 

testing identity to zero of f, using (mz log d logq log( l/6))‘(‘)) arithmetical optwu- 

tions over F, and having the probability of the correct answer at least 1 - 6. 

Note that several deterministic algorithms are known for this problem but for q grow- 

ing all of them are exponential with respect to q (see [2,5, 161). All these algorithms 

are based on evaluations of the polynomial in several points over some extension [F,: 

computed from a primitive root of this field. So, in order to get an effective algorithm 

we should find a primitive root firstly. 

All known (probabilistic and deterministic) algorithms to find a primitive root work 

in two steps: 

Step 1. Construct a “small” set W E iF,/ containing a primitive root. 

Step 2. Find a primitive root testing for primitiveness every element of M. 

Unfortunately, the second step needs the factorization of q’ - 1 that is very time 

consuming for large 1. It was the reason why in the previous papers the authors tried 

to work in slight extensions of IF,. Here we show that in fact we may drop Step 2, 

thus some recent results concernig Step 1 enable us to design fast deterministic tests. 

In particular, we show below (see Theorem 5) that in the case when q is a power 

of a fixed prime number (say q = 2’) Theorem 2.3 of [2] leads to a polynomial time 

algorithm and moreover it enables us to improve the results of [5] with respect to the 

power of q in the estimate of the number of processors (for non-prime fields). 

Theorem 5. Let F, be of characteristic p. Then ,for any positive d and r. in time 

p(mz log d log q)‘(‘) 

one can construct a field IF+ with k = m [log(d + 2),llogql and a test-set U E [Fyh]“’ 

qf size ICI = p(zmlogdlogq)‘(‘) such that a t-sparse polynomial f in m variubles 

over F, with 0 <t < T and deg f <d is identical to zero if’and only if ,f (u,. , u,) = 0 

for any (u~,...,u,) E U. 

Proof. Firstly, let us construct the field 5,~, where k = lm. 1 = [log(d + 2)/ logqj , 

by using the algorithm of [ 111, in time 

(see ( 1)). Then using the algorithms of [ 121 and [ 141 (see also Ch. 2 of [ 151) in time 

p(mlogdlogq)‘(‘) construct a set ‘9Ji E F,L of size 1Y.R = p(m logd logq)‘(‘) and 
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containing a primitive root 0 of F4h. It follows from Theorem 2.3 of [2] that f is 

identical to zero if and only if f(0,. . .,O) = 0 and f(@, @‘, . . , @q’(“-“) = 0, i = 

O,...,z- 1. Defining 

U = {(O,..., O)}U {(~i,~'q',...,~iq""'-")I~ E !JJI,O<i<z - 1) 

we get the desired set. 0 

Corollary. Let F, be a jinite field of characteristic p and let f be a t-sparse poly- 

nomial in m variables over F, with 0 < t <z and deg f < d and given by a “black-box” 

then there is an algorithm for testing identity to zero off in time p(m log d log q)‘(‘)). 

Let us mention that the results above are new even for “large” p (say when q = 

p2) and give improvements of the corresponding tests from [2,5, 161. Also they can 

be implemented in parallel. 

It seems that the estimate of [lo] leads to the construction of the corresponding 

set %R (containing a primitive root) of size p’12(m log d log q)‘(l) in time of the same 

order. In this case we would get an improvement of the zero-identity test of [5] with 

respect to the number of processors beginning from q = p (p’/* rather than p). 

3. Image-size of sparse polynomials 

Here we consider the following question. Let f be a t-sparse univariate polynomial 

over F, and let I > 0 be given a integer. How quickly can we test whether the image 

size 

Z(f) = l{f(x): x E E,H 

is a least I ? 

The “brute force” algorithm takes time q(logq) O(‘) Below we show that for small . 

Z (for Z < qlit) it can be done faster. 

Theorem 6. Let f be a t-sparse univariate polynomial over F, with deg f <q - 1 

given by a “black-box” and assume that a primitive root % of F, is given. Then for 

any I > 0 one can test iy Z(f) >I in time Z’(log q)O(l). 

Proof. Let 

f(x) = ig six”‘, 

ai,...,at E F4*, O<nl < ... < n,<q- 1. 

(3) 

Let us consider the sequence 

U(X) = ~ai#“‘, x = 1,2,..., 
i=l 
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where 0 is a fixed primitive root of F‘,. Let us denote 

D=gcd(n I,..., n,,q- I), T = (q - 1)/D 

We show that the vectors 

u(“x)=(u(x).....u(x+t- I)), x = I,...,T, 

are pairwise different. Indeed, if U(X) = U(y), 1 6x < y < T, then 

&(O?,“. _ (“‘IS ) hv’“! = 0, ,j = 0.. , t - 1. 
1-l 

Because of (3) it implies 

0 I’ll, = (““1 , i = l,...,t, 

thus 

(4) 

n; E 0 (mod (q - 1)/d), i = 1,. . . t, 

where d = gcd(x - v,q - 1). Therefore, 

D=gcd(n ,,..., nt,q- l)>(q- 1)/d > (q- l)/T=D. 

the obtained contradiction shows that (4) is impossible. Now as t-dimensional vectors 

U(x), x = I.. . , T, are pairwise different, their coordinates takes at least T’ ” different 

values. Also, it is easy to see that u(x) = u(x + r), x = 1,2,. . 

Therefore, in order to check if I(f) > I it is enough to compute vectors U( I), . 

U(Q) with Q = I’. If there are 1 <x < ,v<Q such that U(x) = U(v) then r<Q and 

I(.f’) = .f(O) u {u(l), . . .? a?>>, 

otherwise T > Q and 

(5) 

Taking into account that the size of the set (5) can be computed in time Q( log q)“” 

we get the desired result. 

Of course using various algorithms to find primitive roots (or just “small-sized” sets 

containing a primitive root) one can get Theorem 6 in an unconditional form (in any 

case it can be done in time q’14(logq) ()(‘)). The natural question is, can the same result 

be obtained without finding an auxiliary primitive root? 

The considerations above give the bounds 

Also they show that either II(f)1 can be computed by the “brute force” algorithm in 

time qDP’(logq)‘(‘) or it is large enough. The question is: in the second case, can one 

use a Monte-Carlo algorithm to estimate Ir(f)]? (note that the results of [6] cannot be 

applied directly). 
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