308 research outputs found

    State-Regularized Recurrent Neural Networks to Extract Automata and Explain Predictions

    Full text link
    Recurrent neural networks are a widely used class of neural architectures. They have, however, two shortcomings. First, they are often treated as black-box models and as such it is difficult to understand what exactly they learn as well as how they arrive at a particular prediction. Second, they tend to work poorly on sequences requiring long-term memorization, despite having this capacity in principle. We aim to address both shortcomings with a class of recurrent networks that use a stochastic state transition mechanism between cell applications. This mechanism, which we term state-regularization, makes RNNs transition between a finite set of learnable states. We evaluate state-regularized RNNs on (1) regular languages for the purpose of automata extraction; (2) non-regular languages such as balanced parentheses and palindromes where external memory is required; and (3) real-word sequence learning tasks for sentiment analysis, visual object recognition and text categorisation. We show that state-regularization (a) simplifies the extraction of finite state automata that display an RNN's state transition dynamic; (b) forces RNNs to operate more like automata with external memory and less like finite state machines, which potentiality leads to a more structural memory; (c) leads to better interpretability and explainability of RNNs by leveraging the probabilistic finite state transition mechanism over time steps.Comment: To appear at IEEE Transactions on Pattern Analysis and Machine Intelligence. The extended version of State-Regularized Recurrent Neural Networks [arXiv:1901.08817

    A Defense of Pure Connectionism

    Full text link
    Connectionism is an approach to neural-networks-based cognitive modeling that encompasses the recent deep learning movement in artificial intelligence. It came of age in the 1980s, with its roots in cybernetics and earlier attempts to model the brain as a system of simple parallel processors. Connectionist models center on statistical inference within neural networks with empirically learnable parameters, which can be represented as graphical models. More recent approaches focus on learning and inference within hierarchical generative models. Contra influential and ongoing critiques, I argue in this dissertation that the connectionist approach to cognitive science possesses in principle (and, as is becoming increasingly clear, in practice) the resources to model even the most rich and distinctly human cognitive capacities, such as abstract, conceptual thought and natural language comprehension and production. Consonant with much previous philosophical work on connectionism, I argue that a core principle—that proximal representations in a vector space have similar semantic values—is the key to a successful connectionist account of the systematicity and productivity of thought, language, and other core cognitive phenomena. My work here differs from preceding work in philosophy in several respects: (1) I compare a wide variety of connectionist responses to the systematicity challenge and isolate two main strands that are both historically important and reflected in ongoing work today: (a) vector symbolic architectures and (b) (compositional) vector space semantic models; (2) I consider very recent applications of these approaches, including their deployment on large-scale machine learning tasks such as machine translation; (3) I argue, again on the basis mostly of recent developments, for a continuity in representation and processing across natural language, image processing and other domains; (4) I explicitly link broad, abstract features of connectionist representation to recent proposals in cognitive science similar in spirit, such as hierarchical Bayesian and free energy minimization approaches, and offer a single rebuttal of criticisms of these related paradigms; (5) I critique recent alternative proposals that argue for a hybrid Classical (i.e. serial symbolic)/statistical model of mind; (6) I argue that defending the most plausible form of a connectionist cognitive architecture requires rethinking certain distinctions that have figured prominently in the history of the philosophy of mind and language, such as that between word- and phrase-level semantic content, and between inference and association

    Noise facilitation in associative memories of exponential capacity

    Get PDF
    Recent advances in associative memory design through structured pattern sets and graph-based inference al- gorithms have allowed reliable learning and recall of an exponential number of patterns. Although these designs correct external errors in recall, they assume neurons that compute noiselessly, in contrast to the highly variable neurons in brain regions thought to operate associatively such as hippocampus and olfactory cortex. Here we consider associative memories with noisy internal computations and analytically characterize performance. As long as the internal noise level is below a specified threshold, the error probability in the recall phase can be made exceedingly small. More surprisingly, we show that internal noise actually improves the performance of the recall phase while the pattern retrieval capacity remains intact, i.e., the number of stored patterns does not reduce with noise (up to a threshold). Computational experiments lend additional support to our theoretical analysis. This work suggests a functional benefit to noisy neurons in biological neuronal networks

    Holographic Generative Memory: Neurally Inspired One-Shot Learning with Memory Augmented Neural Networks

    Get PDF
    Humans quickly parse and categorize stimuli by combining perceptual information and previously learned knowledge. We are capable of learning new information quickly with only a few observations, and sometimes even a single observation. This one-shot learning (OSL) capability is still very difficult to realize in machine learning models. Novelty is commonly thought to be the primary driver for OSL. However, neuroscience literature shows that biological OSL mechanisms are guided by uncertainty, rather than novelty, motivating us to explore this idea for machine learning. In this work, we investigate OSL for neural networks using more robust compositional knowledge representations and a biologically inspired uncertainty mechanism to modulate the rate of learning. We introduce several new neural network models that combine Holographic Reduced Representation (HRR) and Variational Autoencoders. Extending these new models culminates in the Holographic Generative Memory (HGMEM) model. HGMEM is a novel unsupervised memory augmented neural network. It offers solutions to many of the practical drawbacks associated with HRRs while also providing storage, recall, and generation of latent compositional knowledge representations. Uncertainty is measured as a native part of HGMEM operation by applying trained probabilistic dropout to fully-connected layers. During training, the learning rate is modulated using these uncertainty measurements in a manner inspired by our motivating neuroscience mechanism for OSL. Model performance is demonstrated on several image datasets with experiments that reflect our theoretical approach

    Error-correction on non-standard communication channels

    Get PDF
    Many communication systems are poorly modelled by the standard channels assumed in the information theory literature, such as the binary symmetric channel or the additive white Gaussian noise channel. Real systems suffer from additional problems including time-varying noise, cross-talk, synchronization errors and latency constraints. In this thesis, low-density parity-check codes and codes related to them are applied to non-standard channels. First, we look at time-varying noise modelled by a Markov channel. A low-density parity-check code decoder is modified to give an improvement of over 1dB. Secondly, novel codes based on low-density parity-check codes are introduced which produce transmissions with Pr(bit = 1) ≠ Pr(bit = 0). These non-linear codes are shown to be good candidates for multi-user channels with crosstalk, such as optical channels. Thirdly, a channel with synchronization errors is modelled by random uncorrelated insertion or deletion events at unknown positions. Marker codes formed from low-density parity-check codewords with regular markers inserted within them are studied. It is shown that a marker code with iterative decoding has performance close to the bounds on the channel capacity, significantly outperforming other known codes. Finally, coding for a system with latency constraints is studied. For example, if a telemetry system involves a slow channel some error correction is often needed quickly whilst the code should be able to correct remaining errors later. A new code is formed from the intersection of a convolutional code with a high rate low-density parity-check code. The convolutional code has good early decoding performance and the high rate low-density parity-check code efficiently cleans up remaining errors after receiving the entire block. Simulations of the block code show a gain of 1.5dB over a standard NASA code

    AHA! an 'Artificial Hippocampal Algorithm' for Episodic Machine Learning

    Full text link
    The majority of ML research concerns slow, statistical learning of i.i.d. samples from large, labelled datasets. Animals do not learn this way. An enviable characteristic of animal learning is `episodic' learning - the ability to memorise a specific experience as a composition of existing concepts, after just one experience, without provided labels. The new knowledge can then be used to distinguish between similar experiences, to generalise between classes, and to selectively consolidate to long-term memory. The Hippocampus is known to be vital to these abilities. AHA is a biologically-plausible computational model of the Hippocampus. Unlike most machine learning models, AHA is trained without external labels and uses only local credit assignment. We demonstrate AHA in a superset of the Omniglot one-shot classification benchmark. The extended benchmark covers a wider range of known hippocampal functions by testing pattern separation, completion, and recall of original input. These functions are all performed within a single configuration of the computational model. Despite these constraints, image classification results are comparable to conventional deep convolutional ANNs
    • …
    corecore