21,218 research outputs found

    Safe Multi-Agent Interaction through Robust Control Barrier Functions with Learned Uncertainties

    Get PDF
    Robots operating in real world settings must navigate and maintain safety while interacting with many heterogeneous agents and obstacles. Multi-Agent Control Barrier Functions (CBF) have emerged as a computationally efficient tool to guarantee safety in multi-agent environments, but they assume perfect knowledge of both the robot dynamics and other agents' dynamics. While knowledge of the robot's dynamics might be reasonably well known, the heterogeneity of agents in real-world environments means there will always be considerable uncertainty in our prediction of other agents' dynamics. This work aims to learn high-confidence bounds for these dynamic uncertainties using Matrix-Variate Gaussian Process models, and incorporates them into a robust multi-agent CBF framework. We transform the resulting min-max robust CBF into a quadratic program, which can be efficiently solved in real time. We verify via simulation results that the nominal multi-agent CBF is often violated during agent interactions, whereas our robust formulation maintains safety with a much higher probability and adapts to learned uncertainties

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Risk Management in the Arctic Offshore: Wicked Problems Require New Paradigms

    Get PDF
    Recent project-management literature and high-profile disasters—the financial crisis, the BP Deepwater Horizon oil spill, and the Fukushima nuclear accident—illustrate the flaws of traditional risk models for complex projects. This research examines how various groups with interests in the Arctic offshore define risks. The findings link the wicked problem framework and the emerging paradigm of Project Management of the Second Order (PM-2). Wicked problems are problems that are unstructured, complex, irregular, interactive, adaptive, and novel. The authors synthesize literature on the topic to offer strategies for navigating wicked problems, provide new variables to deconstruct traditional risk models, and integrate objective and subjective schools of risk analysis

    Data-driven Safe Control of Linear Systems Under Epistemic and Aleatory Uncertainties

    Full text link
    Safe control of constrained linear systems under both epistemic and aleatory uncertainties is considered. The aleatory uncertainty characterizes random noises and is modeled by a probability distribution function (PDF) and the epistemic uncertainty characterizes the lack of knowledge on the system dynamics. Data-based probabilistic safe controllers are designed for the cases where the noise PDF is 1) zero-mean Gaussian with a known covariance, 2) zero-mean Gaussian with an uncertain covariance, and 3) zero-mean non-Gaussian with an unknown distribution. Easy-to-check model-based conditions for guaranteeing probabilistic safety are provided for the first case by introducing probabilistic contractive sets. These results are then extended to the second and third cases by leveraging distributionally-robust probabilistic safe control and conditional value-at-risk (CVaR) based probabilistic safe control, respectively. Data-based implementations of these probabilistic safe controllers are then considered. It is shown that data-richness requirements for directly learning a safe controller is considerably weaker than data-richness requirements for model-based safe control approaches that undertake a model identification. Moreover, an upper bound on the minimal risk level, under which the existence of a safe controller is guaranteed, is learned using collected data. A simulation example is provided to show the effectiveness of the proposed approach
    • …
    corecore