4 research outputs found

    Probabilistic Programming (Invited Talk)

    No full text
    Probabilistic programming refers to the idea of using standard programming constructs for specifying probabilistic models from machine learning and statistics, and employing generic inference algorithms for answering various queries on these models, such as posterior inference and estimation of model evidence. Although this idea itself is not new and was, in fact, explored by several programming-language and statistics researchers in the early 2000, it is only in the last few years that probabilistic programming has gained a large amount of attention among researchers in machine learning and programming languages, and that expressive and efficient probabilistic programming systems (such as Anglican, Church, Figaro, Infer.net, PSI, PyMC, Stan, and Venture) started to appear and have been taken up by a nontrivial number of users. The primary goal of my talk is to introduce probabilistic programming to the CONCUR/QUEST/FORMATS audience. At the end of my talk, I want the audience to understand basic results and techniques in probabilistic programming and to feel that these results and techniques are relevant or at least related to what she or he studies, although they typically come from foreign research areas, such as machine learning and statistics. My talk will contain both technical materials and lessons that I learnt from my machine-learning colleagues in Oxford, who are developing a highly-expressive higher-order probabilistic programming language, called Anglican. It will also include my work on the denotational semantics of higher-order probabilistic programming languages and their inference algorithms, which are jointly pursued with colleagues in Cambridge, Edinburgh, Oxford and Tubingen

    Quantitative Semantics for Probabilistic Programming (Invited Talk)

    No full text
    Probabilistic programming has many applications in statistics, physics, ... so that all programming languages have been equipped with probabilistic library. However, there is a need in developing semantical tools in order to formalize higher order and recursive probabilistic languages. Indeed, it is well known that categories of measurable spaces are not Cartesian closed. We have been studying quantitative semantics of probabilistic spaces to fill this gap. A first step has been to focus on probabilistic programming languages with discrete types such as integers and booleans. In this setting, probabilistic programs can be seen as linear combinations of deterministic programs. Probabilistic Coherent Spaces constitute a Cartesian closed category that is fully abstract with respect to probabilistic Call-By-Push-Value. Moreover, this toy language is endowed with a memorization operator that allow to encode most discrete probabilistic programs. The second step is to move on probabilistic programming with continuous types representing for instance reals endowed with Lebesgue measurable sets. We introduce the category of cones and stable functions which is Cartesian closed. The trick is to enlarge the category of measurable spaces to gain closeness and to embrace measurable spaces. Besides, the category of cones is a sound and adequate model of a higher order and recursive probabilistic language in which most classical distributions and probabilistic tools can be encoded. This is joint work with Thomas Ehrhard and Michele Pagani
    corecore