5,143 research outputs found

    Bayesian network models of biological signaling pathways

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Biological Engineering Division, 2006.Includes bibliographical references (p. 153-165).Cells communicate with other cells, and process cues from their environment, via signaling pathways, in which extracellular cues trigger a cascade of information flow, causing signaling molecules to become chemically, physically or locationally modified, gain new functional capabilities, and affect subsequent molecules in the cascade, culminating in a phenotypic cellular response. Mapping the influence connections among biomolecules in a signaling cascade aids in understanding of the underlying biological process and in development of therapeutics for diseases involving aberrant pathways, such as cancer and autoimmune disease. In this thesis, we present an approach for automatically reverse-engineering the structure of a signaling pathway, from high-throughput data. We apply Bayesian network structure inference to signaling protein measurements performed in thousands of single cells, using a machine called a flow cytorneter. Our de novo reconstruction of a T-cell signaling map was highly accurate, closely reproducing the known pathway structure, and accurately predicted novel pathway connections. The flow cytometry measurements include specific perturbations of signaling molecules, aiding in a causal interpretation of the Bayesian network graph structure.(cont.) However, this machine can measure only -4-12 molecules per cell, too few for effective coverage of a signaling pathway. To address this problem, we employ a number of biologically motivated assumptions to extend our technique to scale up from the number of molecules measured to larger models, using measurements of overlapping variable subsets. We demonstrate this approach by scaling up to a model of 11 variables, using 15 overlapping 4-variable measurements.by Karen Sachs.Ph.D

    How to understand the cell by breaking it: network analysis of gene perturbation screens

    Get PDF
    Modern high-throughput gene perturbation screens are key technologies at the forefront of genetic research. Combined with rich phenotypic descriptors they enable researchers to observe detailed cellular reactions to experimental perturbations on a genome-wide scale. This review surveys the current state-of-the-art in analyzing perturbation screens from a network point of view. We describe approaches to make the step from the parts list to the wiring diagram by using phenotypes for network inference and integrating them with complementary data sources. The first part of the review describes methods to analyze one- or low-dimensional phenotypes like viability or reporter activity; the second part concentrates on high-dimensional phenotypes showing global changes in cell morphology, transcriptome or proteome.Comment: Review based on ISMB 2009 tutorial; after two rounds of revisio

    Graph Theory and Networks in Biology

    Get PDF
    In this paper, we present a survey of the use of graph theoretical techniques in Biology. In particular, we discuss recent work on identifying and modelling the structure of bio-molecular networks, as well as the application of centrality measures to interaction networks and research on the hierarchical structure of such networks and network motifs. Work on the link between structural network properties and dynamics is also described, with emphasis on synchronization and disease propagation.Comment: 52 pages, 5 figures, Survey Pape

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed

    Causal Modeling Using Network Ensemble Simulations of Genetic and Gene Expression Data Predicts Genes Involved in Rheumatoid Arthritis

    Get PDF
    Tumor necrosis factor α (TNF-α) is a key regulator of inflammation and rheumatoid arthritis (RA). TNF-α blocker therapies can be very effective for a substantial number of patients, but fail to work in one third of patients who show no or minimal response. It is therefore necessary to discover new molecular intervention points involved in TNF-α blocker treatment of rheumatoid arthritis patients. We describe a data analysis strategy for predicting gene expression measures that are critical for rheumatoid arthritis using a combination of comprehensive genotyping, whole blood gene expression profiles and the component clinical measures of the arthritis Disease Activity Score 28 (DAS28) score. Two separate network ensembles, each comprised of 1024 networks, were built from molecular measures from subjects before and 14 weeks after treatment with TNF-α blocker. The network ensemble built from pre-treated data captures TNF-α dependent mechanistic information, while the ensemble built from data collected under TNF-α blocker treatment captures TNF-α independent mechanisms. In silico simulations of targeted, personalized perturbations of gene expression measures from both network ensembles identify transcripts in three broad categories. Firstly, 22 transcripts are identified to have new roles in modulating the DAS28 score; secondly, there are 6 transcripts that could be alternative targets to TNF-α blocker therapies, including CD86 - a component of the signaling axis targeted by Abatacept (CTLA4-Ig), and finally, 59 transcripts that are predicted to modulate the count of tender or swollen joints but not sufficiently enough to have a significant impact on DAS28
    • …
    corecore