99 research outputs found

    Finding polynomial loop invariants for probabilistic programs

    Full text link
    Quantitative loop invariants are an essential element in the verification of probabilistic programs. Recently, multivariate Lagrange interpolation has been applied to synthesizing polynomial invariants. In this paper, we propose an alternative approach. First, we fix a polynomial template as a candidate of a loop invariant. Using Stengle's Positivstellensatz and a transformation to a sum-of-squares problem, we find sufficient conditions on the coefficients. Then, we solve a semidefinite programming feasibility problem to synthesize the loop invariants. If the semidefinite program is unfeasible, we backtrack after increasing the degree of the template. Our approach is semi-complete in the sense that it will always lead us to a feasible solution if one exists and numerical errors are small. Experimental results show the efficiency of our approach.Comment: accompanies an ATVA 2017 submissio

    Catoids and modal convolution algebras

    Get PDF
    We show how modal quantales arise as convolution algebras QX of functions from catoids X, multisemigroups equipped with source and target maps, into modal quantales value or weight quantales Q. In the tradition of boolean algebras with operators we study modal correspondences between algebraic laws in X, Q and QX. The catoids introduced generalise Schweizer and Sklar’s function systems and single-set categories to structures isomorphic to algebras of ternary relations, as they are used for boolean algebras with operators and substructural logics. Our correspondence results support a generic construction of weighted modal quantales from catoids. This construction is illustrated by many examples. We also relate our results to reasoning with stochastic matrices or probabilistic predicate transformers

    A Holistic Approach in Embedded System Development

    Full text link
    We present pState, a tool for developing "complex" embedded systems by integrating validation into the design process. The goal is to reduce validation time. To this end, qualitative and quantitative properties are specified in system models expressed as pCharts, an extended version of hierarchical state machines. These properties are specified in an intuitive way such that they can be written by engineers who are domain experts, without needing to be familiar with temporal logic. From the system model, executable code that preserves the verified properties is generated. The design is documented on the model and the documentation is passed as comments into the generated code. On the series of examples we illustrate how models and properties are specified using pState.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    Towards mechanized correctness proofs for cryptographic algorithms: Axiomatization of a probabilistic Hoare style logic

    Get PDF
    In [Corin, den Hartog in ICALP 2006] we build a formal verification technique for game based correctness proofs of cryptograhic algorithms based on a probabilistic Hoare style logic [den Hartog, de Vink in IJFCS 13(3), 2002]. An important step towards enabling mechanized verification within this technique is an axiomatization of implication between predicates which is purely semantically defined in [den Hartog, de Vink in IJFCS 13(3), 2002]. In this paper we provide an axiomatization and illustrate its place in the formal verification technique of [Corin, den Hartog in ICALP 2006]

    Stochastic Relations Interpreting Modal Logic

    Get PDF
    We propose an interpretation of modal logic through stochastic relations, providing a probabilistic complement to the usual nondeterministic interpretations using Kripke models. A simple temporal logic and a logic with a countable number of diamonds illustrate the approach. The main technical result of this paper is a probabilistic analogon to the well-known Hennessy-Milner Theorem characterizing models that have the same theories for their states and bisimilarity as equivalent properties. This requires the study of congruences for stochastic relations that underly the interpretation, for which a general bisimilarity result is also established. The results depend on the existence of semi-pullbacks for stochastic relations over analytic spaces

    Computer-aided verification in mechanism design

    Full text link
    In mechanism design, the gold standard solution concepts are dominant strategy incentive compatibility and Bayesian incentive compatibility. These solution concepts relieve the (possibly unsophisticated) bidders from the need to engage in complicated strategizing. While incentive properties are simple to state, their proofs are specific to the mechanism and can be quite complex. This raises two concerns. From a practical perspective, checking a complex proof can be a tedious process, often requiring experts knowledgeable in mechanism design. Furthermore, from a modeling perspective, if unsophisticated agents are unconvinced of incentive properties, they may strategize in unpredictable ways. To address both concerns, we explore techniques from computer-aided verification to construct formal proofs of incentive properties. Because formal proofs can be automatically checked, agents do not need to manually check the properties, or even understand the proof. To demonstrate, we present the verification of a sophisticated mechanism: the generic reduction from Bayesian incentive compatible mechanism design to algorithm design given by Hartline, Kleinberg, and Malekian. This mechanism presents new challenges for formal verification, including essential use of randomness from both the execution of the mechanism and from the prior type distributions. As an immediate consequence, our work also formalizes Bayesian incentive compatibility for the entire family of mechanisms derived via this reduction. Finally, as an intermediate step in our formalization, we provide the first formal verification of incentive compatibility for the celebrated Vickrey-Clarke-Groves mechanism
    corecore