328 research outputs found

    Driven to Distraction: Self-Supervised Distractor Learning for Robust Monocular Visual Odometry in Urban Environments

    Full text link
    We present a self-supervised approach to ignoring "distractors" in camera images for the purposes of robustly estimating vehicle motion in cluttered urban environments. We leverage offline multi-session mapping approaches to automatically generate a per-pixel ephemerality mask and depth map for each input image, which we use to train a deep convolutional network. At run-time we use the predicted ephemerality and depth as an input to a monocular visual odometry (VO) pipeline, using either sparse features or dense photometric matching. Our approach yields metric-scale VO using only a single camera and can recover the correct egomotion even when 90% of the image is obscured by dynamic, independently moving objects. We evaluate our robust VO methods on more than 400km of driving from the Oxford RobotCar Dataset and demonstrate reduced odometry drift and significantly improved egomotion estimation in the presence of large moving vehicles in urban traffic.Comment: International Conference on Robotics and Automation (ICRA), 2018. Video summary: http://youtu.be/ebIrBn_nc-

    Robust Localization in 3D Prior Maps for Autonomous Driving.

    Full text link
    In order to navigate autonomously, many self-driving vehicles require precise localization within an a priori known map that is annotated with exact lane locations, traffic signs, and additional metadata that govern the rules of the road. This approach transforms the extremely difficult and unpredictable task of online perception into a more structured localization problem—where exact localization in these maps provides the autonomous agent a wealth of knowledge for safe navigation. This thesis presents several novel localization algorithms that leverage a high-fidelity three-dimensional (3D) prior map that together provide a robust and reliable framework for vehicle localization. First, we present a generic probabilistic method for localizing an autonomous vehicle equipped with a 3D light detection and ranging (LIDAR) scanner. This proposed algorithm models the world as a mixture of several Gaussians, characterizing the z-height and reflectivity distribution of the environment—which we rasterize to facilitate fast and exact multiresolution inference. Second, we propose a visual localization strategy that replaces the expensive 3D LIDAR scanners with significantly cheaper, commodity cameras. In doing so, we exploit a graphics processing unit to generate synthetic views of our belief environment, resulting in a localization solution that achieves a similar order of magnitude error rate with a sensor that is several orders of magnitude cheaper. Finally, we propose a visual obstacle detection algorithm that leverages knowledge of our high-fidelity prior maps in its obstacle prediction model. This not only provides obstacle awareness at high rates for vehicle navigation, but also improves our visual localization quality as we are cognizant of static and non-static regions of the environment. All of these proposed algorithms are demonstrated to be real-time solutions for our self-driving car.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133410/1/rwolcott_1.pd

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Edge Based RGB-D SLAM and SLAM Based Navigation

    Get PDF

    Técnicas de visión por computador para la detección del verdor y la detección de obstáculos en campos de maíz

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Ingeniería del Software e Inteligencia Artificial, leída el 22/06/2017There is an increasing demand in the use of Computer Vision techniques in Precision Agriculture (PA) based on images captured with cameras on-board autonomous vehicles. Two techniques have been developed in this research. The rst for greenness identi cation and the second for obstacle detection in maize elds, including people and animals, for tractors in the RHEA (robot eets for highly e ective and forestry management) project, equipped with monocular cameras on-board the tractors. For vegetation identi cation in agricultural images the combination of colour vegetation indices (CVIs) with thresholding techniques is the usual strategy where the remaining elements on the image are also extracted. The main goal of this research line is the development of an alternative strategy for vegetation detection. To achieve our goal, we propose a methodology based on two well-known techniques in computer vision: Bag of Words representation (BoW) and Support Vector Machines (SVM). Then, each image is partitioned into several Regions Of Interest (ROIs). Afterwards, a feature descriptor is obtained for each ROI, then the descriptor is evaluated with a classi er model (previously trained to discriminate between vegetation and background) to determine whether or not the ROI is vegetation...Cada vez existe mayor demanda en el uso de t ecnicas de Visi on por Computador en Agricultura de Precisi on mediante el procesamiento de im agenes captadas por c amaras instaladas en veh culos aut onomos. En este trabajo de investigaci on se han desarrollado dos tipos de t ecnicas. Una para la identi caci on de plantas verdes y otra para la detecci on de obst aculos en campos de ma z, incluyendo personas y animales, para tractores del proyecto RHEA. El objetivo nal de los veh culos aut onomos fue la identi caci on y eliminaci on de malas hierbas en los campos de ma z. En im agenes agr colas la vegetaci on se detecta generalmente mediante ndices de vegetaci on y m etodos de umbralizaci on. Los ndices se calculan a partir de las propiedades espectrales en las im agenes de color. En esta tesis se propone un nuevo m etodo con tal n, lo que constituye un objetivo primordial de la investigaci on. La propuesta se basa en una estrategia conocida como \bolsa de palabras" conjuntamente con un modelo se aprendizaje supervisado. Ambas t ecnicas son ampliamente utilizadas en reconocimiento y clasi caci on de im agenes. La imagen se divide inicialmente en regiones homog eneas o de inter es (RIs). Dada una colecci on de RIs, obtenida de un conjunto de im agenes agr colas, se calculan sus caracter sticas locales que se agrupan por su similitud. Cada grupo representa una \palabra visual", y el conjunto de palabras visuales encontradas forman un \diccionario visual". Cada RI se representa por un conjunto de palabras visuales las cuales se cuanti can de acuerdo a su ocurrencia dentro de la regi on obteniendo as un vector-c odigo o \codebook", que es descriptor de la RI. Finalmente, se usan las M aquinas de Vectores Soporte para evaluar los vectores-c odigo y as , discriminar entre RIs que son vegetaci on del resto...Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformáticaTRUEunpu

    Predictive World Models from Real-World Partial Observations

    Full text link
    Cognitive scientists believe adaptable intelligent agents like humans perform reasoning through learned causal mental simulations of agents and environments. The problem of learning such simulations is called predictive world modeling. Recently, reinforcement learning (RL) agents leveraging world models have achieved SOTA performance in game environments. However, understanding how to apply the world modeling approach in complex real-world environments relevant to mobile robots remains an open question. In this paper, we present a framework for learning a probabilistic predictive world model for real-world road environments. We implement the model using a hierarchical VAE (HVAE) capable of predicting a diverse set of fully observed plausible worlds from accumulated sensor observations. While prior HVAE methods require complete states as ground truth for learning, we present a novel sequential training method to allow HVAEs to learn to predict complete states from partially observed states only. We experimentally demonstrate accurate spatial structure prediction of deterministic regions achieving 96.21 IoU, and close the gap to perfect prediction by 62% for stochastic regions using the best prediction. By extending HVAEs to cases where complete ground truth states do not exist, we facilitate continual learning of spatial prediction as a step towards realizing explainable and comprehensive predictive world models for real-world mobile robotics applications. Code is available at https://github.com/robin-karlsson0/predictive-world-models.Comment: Accepted for IEEE MOST 202
    • …
    corecore