1,119 research outputs found

    Dependency parsing of Turkish

    Get PDF
    The suitability of different parsing methods for different languages is an important topic in syntactic parsing. Especially lesser-studied languages, typologically different from the languages for which methods have originally been developed, poses interesting challenges in this respect. This article presents an investigation of data-driven dependency parsing of Turkish, an agglutinative free constituent order language that can be seen as the representative of a wider class of languages of similar type. Our investigations show that morphological structure plays an essential role in finding syntactic relations in such a language. In particular, we show that employing sublexical representations called inflectional groups, rather than word forms, as the basic parsing units improves parsing accuracy. We compare two different parsing methods, one based on a probabilistic model with beam search, the other based on discriminative classifiers and a deterministic parsing strategy, and show that the usefulness of sublexical units holds regardless of parsing method.We examine the impact of morphological and lexical information in detail and show that, properly used, this kind of information can improve parsing accuracy substantially. Applying the techniques presented in this article, we achieve the highest reported accuracy for parsing the Turkish Treebank

    LFG without C-structures

    Get PDF
    We explore the use of two dependency parsers, Malt and MST, in a Lexical Functional Grammar parsing pipeline. We compare this to the traditional LFG parsing pipeline which uses constituency parsers. We train the dependency parsers not on classical LFG f-structures but rather on modified dependency-tree versions of these in which all words in the input sentence are represented and multiple heads are removed. For the purposes of comparison, we also modify the existing CFG-based LFG parsing pipeline so that these "LFG-inspired" dependency trees are produced. We find that the differences in parsing accuracy over the various parsing architectures is small

    The CoNLL 2007 shared task on dependency parsing

    Get PDF
    The Conference on Computational Natural Language Learning features a shared task, in which participants train and test their learning systems on the same data sets. In 2007, as in 2006, the shared task has been devoted to dependency parsing, this year with both a multilingual track and a domain adaptation track. In this paper, we define the tasks of the different tracks and describe how the data sets were created from existing treebanks for ten languages. In addition, we characterize the different approaches of the participating systems, report the test results, and provide a first analysis of these results

    Statistical parsing of morphologically rich languages (SPMRL): what, how and whither

    Get PDF
    The term Morphologically Rich Languages (MRLs) refers to languages in which significant information concerning syntactic units and relations is expressed at word-level. There is ample evidence that the application of readily available statistical parsing models to such languages is susceptible to serious performance degradation. The first workshop on statistical parsing of MRLs hosts a variety of contributions which show that despite language-specific idiosyncrasies, the problems associated with parsing MRLs cut across languages and parsing frameworks. In this paper we review the current state-of-affairs with respect to parsing MRLs and point out central challenges. We synthesize the contributions of researchers working on parsing Arabic, Basque, French, German, Hebrew, Hindi and Korean to point out shared solutions across languages. The overarching analysis suggests itself as a source of directions for future investigations

    A Novel Neural Network Model for Joint POS Tagging and Graph-based Dependency Parsing

    Full text link
    We present a novel neural network model that learns POS tagging and graph-based dependency parsing jointly. Our model uses bidirectional LSTMs to learn feature representations shared for both POS tagging and dependency parsing tasks, thus handling the feature-engineering problem. Our extensive experiments, on 19 languages from the Universal Dependencies project, show that our model outperforms the state-of-the-art neural network-based Stack-propagation model for joint POS tagging and transition-based dependency parsing, resulting in a new state of the art. Our code is open-source and available together with pre-trained models at: https://github.com/datquocnguyen/jPTDPComment: v2: also include universal POS tagging, UAS and LAS accuracies w.r.t gold-standard segmentation on Universal Dependencies 2.0 - CoNLL 2017 shared task test data; in CoNLL 201
    corecore