6,335 research outputs found

    Learning Language from a Large (Unannotated) Corpus

    Full text link
    A novel approach to the fully automated, unsupervised extraction of dependency grammars and associated syntax-to-semantic-relationship mappings from large text corpora is described. The suggested approach builds on the authors' prior work with the Link Grammar, RelEx and OpenCog systems, as well as on a number of prior papers and approaches from the statistical language learning literature. If successful, this approach would enable the mining of all the information needed to power a natural language comprehension and generation system, directly from a large, unannotated corpus.Comment: 29 pages, 5 figures, research proposa

    Treebank-based acquisition of wide-coverage, probabilistic LFG resources: project overview, results and evaluation

    Get PDF
    This paper presents an overview of a project to acquire wide-coverage, probabilistic Lexical-Functional Grammar (LFG) resources from treebanks. Our approach is based on an automatic annotation algorithm that annotates ā€œrawā€ treebank trees with LFG f-structure information approximating to basic predicate-argument/dependency structure. From the f-structure-annotated treebank we extract probabilistic unification grammar resources. We present the annotation algorithm, the extraction of lexical information and the acquisition of wide-coverage and robust PCFG-based LFG approximations including long-distance dependency resolution. We show how the methodology can be applied to multilingual, treebank-based unification grammar acquisition. Finally we show how simple (quasi-)logical forms can be derived automatically from the f-structures generated for the treebank trees

    Discovery of Linguistic Relations Using Lexical Attraction

    Full text link
    This work has been motivated by two long term goals: to understand how humans learn language and to build programs that can understand language. Using a representation that makes the relevant features explicit is a prerequisite for successful learning and understanding. Therefore, I chose to represent relations between individual words explicitly in my model. Lexical attraction is defined as the likelihood of such relations. I introduce a new class of probabilistic language models named lexical attraction models which can represent long distance relations between words and I formalize this new class of models using information theory. Within the framework of lexical attraction, I developed an unsupervised language acquisition program that learns to identify linguistic relations in a given sentence. The only explicitly represented linguistic knowledge in the program is lexical attraction. There is no initial grammar or lexicon built in and the only input is raw text. Learning and processing are interdigitated. The processor uses the regularities detected by the learner to impose structure on the input. This structure enables the learner to detect higher level regularities. Using this bootstrapping procedure, the program was trained on 100 million words of Associated Press material and was able to achieve 60% precision and 50% recall in finding relations between content-words. Using knowledge of lexical attraction, the program can identify the correct relations in syntactically ambiguous sentences such as ``I saw the Statue of Liberty flying over New York.''Comment: dissertation, 56 page

    Syntactic Topic Models

    Full text link
    The syntactic topic model (STM) is a Bayesian nonparametric model of language that discovers latent distributions of words (topics) that are both semantically and syntactically coherent. The STM models dependency parsed corpora where sentences are grouped into documents. It assumes that each word is drawn from a latent topic chosen by combining document-level features and the local syntactic context. Each document has a distribution over latent topics, as in topic models, which provides the semantic consistency. Each element in the dependency parse tree also has a distribution over the topics of its children, as in latent-state syntax models, which provides the syntactic consistency. These distributions are convolved so that the topic of each word is likely under both its document and syntactic context. We derive a fast posterior inference algorithm based on variational methods. We report qualitative and quantitative studies on both synthetic data and hand-parsed documents. We show that the STM is a more predictive model of language than current models based only on syntax or only on topics
    • ā€¦
    corecore