14,371 research outputs found

    Probabilistic Matching of Planar Regions

    Get PDF
    We analyze a probabilistic algorithm for matching shapes modeled by planar regions under translations and rigid motions (rotation and translation). Given shapes AA and BB, the algorithm computes a transformation tt such that with high probability the area of overlap of t(A)t(A) and BB is close to maximal. In the case of polygons, we give a time bound that does not depend significantly on the number of vertices

    Planar Prior Assisted PatchMatch Multi-View Stereo

    Full text link
    The completeness of 3D models is still a challenging problem in multi-view stereo (MVS) due to the unreliable photometric consistency in low-textured areas. Since low-textured areas usually exhibit strong planarity, planar models are advantageous to the depth estimation of low-textured areas. On the other hand, PatchMatch multi-view stereo is very efficient for its sampling and propagation scheme. By taking advantage of planar models and PatchMatch multi-view stereo, we propose a planar prior assisted PatchMatch multi-view stereo framework in this paper. In detail, we utilize a probabilistic graphical model to embed planar models into PatchMatch multi-view stereo and contribute a novel multi-view aggregated matching cost. This novel cost takes both photometric consistency and planar compatibility into consideration, making it suited for the depth estimation of both non-planar and planar regions. Experimental results demonstrate that our method can efficiently recover the depth information of extremely low-textured areas, thus obtaining high complete 3D models and achieving state-of-the-art performance.Comment: Accepted by AAAI-202

    Probabilistic Combination of Noisy Points and Planes for RGB-D Odometry

    Full text link
    This work proposes a visual odometry method that combines points and plane primitives, extracted from a noisy depth camera. Depth measurement uncertainty is modelled and propagated through the extraction of geometric primitives to the frame-to-frame motion estimation, where pose is optimized by weighting the residuals of 3D point and planes matches, according to their uncertainties. Results on an RGB-D dataset show that the combination of points and planes, through the proposed method, is able to perform well in poorly textured environments, where point-based odometry is bound to fail.Comment: Accepted to TAROS 201

    GASP : Geometric Association with Surface Patches

    Full text link
    A fundamental challenge to sensory processing tasks in perception and robotics is the problem of obtaining data associations across views. We present a robust solution for ascertaining potentially dense surface patch (superpixel) associations, requiring just range information. Our approach involves decomposition of a view into regularized surface patches. We represent them as sequences expressing geometry invariantly over their superpixel neighborhoods, as uniquely consistent partial orderings. We match these representations through an optimal sequence comparison metric based on the Damerau-Levenshtein distance - enabling robust association with quadratic complexity (in contrast to hitherto employed joint matching formulations which are NP-complete). The approach is able to perform under wide baselines, heavy rotations, partial overlaps, significant occlusions and sensor noise. The technique does not require any priors -- motion or otherwise, and does not make restrictive assumptions on scene structure and sensor movement. It does not require appearance -- is hence more widely applicable than appearance reliant methods, and invulnerable to related ambiguities such as textureless or aliased content. We present promising qualitative and quantitative results under diverse settings, along with comparatives with popular approaches based on range as well as RGB-D data.Comment: International Conference on 3D Vision, 201

    High-Performance and Tunable Stereo Reconstruction

    Get PDF
    Traditional stereo algorithms have focused their efforts on reconstruction quality and have largely avoided prioritizing for run time performance. Robots, on the other hand, require quick maneuverability and effective computation to observe its immediate environment and perform tasks within it. In this work, we propose a high-performance and tunable stereo disparity estimation method, with a peak frame-rate of 120Hz (VGA resolution, on a single CPU-thread), that can potentially enable robots to quickly reconstruct their immediate surroundings and maneuver at high-speeds. Our key contribution is a disparity estimation algorithm that iteratively approximates the scene depth via a piece-wise planar mesh from stereo imagery, with a fast depth validation step for semi-dense reconstruction. The mesh is initially seeded with sparsely matched keypoints, and is recursively tessellated and refined as needed (via a resampling stage), to provide the desired stereo disparity accuracy. The inherent simplicity and speed of our approach, with the ability to tune it to a desired reconstruction quality and runtime performance makes it a compelling solution for applications in high-speed vehicles.Comment: Accepted to International Conference on Robotics and Automation (ICRA) 2016; 8 pages, 5 figure

    Keyframe-based monocular SLAM: design, survey, and future directions

    Get PDF
    Extensive research in the field of monocular SLAM for the past fifteen years has yielded workable systems that found their way into various applications in robotics and augmented reality. Although filter-based monocular SLAM systems were common at some time, the more efficient keyframe-based solutions are becoming the de facto methodology for building a monocular SLAM system. The objective of this paper is threefold: first, the paper serves as a guideline for people seeking to design their own monocular SLAM according to specific environmental constraints. Second, it presents a survey that covers the various keyframe-based monocular SLAM systems in the literature, detailing the components of their implementation, and critically assessing the specific strategies made in each proposed solution. Third, the paper provides insight into the direction of future research in this field, to address the major limitations still facing monocular SLAM; namely, in the issues of illumination changes, initialization, highly dynamic motion, poorly textured scenes, repetitive textures, map maintenance, and failure recovery

    Class-Based Feature Matching Across Unrestricted Transformations

    Get PDF
    We develop a novel method for class-based feature matching across large changes in viewing conditions. The method is based on the property that when objects share a similar part, the similarity is preserved across viewing conditions. Given a feature and a training set of object images, we first identify the subset of objects that share this feature. The transformation of the feature's appearance across viewing conditions is determined mainly by properties of the feature, rather than of the object in which it is embedded. Therefore, the transformed feature will be shared by approximately the same set of objects. Based on this consistency requirement, corresponding features can be reliably identified from a set of candidate matches. Unlike previous approaches, the proposed scheme compares feature appearances only in similar viewing conditions, rather than across different viewing conditions. As a result, the scheme is not restricted to locally planar objects or affine transformations. The approach also does not require examples of correct matches. We show that by using the proposed method, a dense set of accurate correspondences can be obtained. Experimental comparisons demonstrate that matching accuracy is significantly improved over previous schemes. Finally, we show that the scheme can be successfully used for invariant object recognition
    • …
    corecore